Self-similar splines
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 925-927
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2024_79_5_a5,
     author = {T. I. Zaitseva},
     title = {Self-similar splines},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {925--927},
     year = {2024},
     volume = {79},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_5_a5/}
}
TY  - JOUR
AU  - T. I. Zaitseva
TI  - Self-similar splines
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 925
EP  - 927
VL  - 79
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_5_a5/
LA  - en
ID  - RM_2024_79_5_a5
ER  - 
%0 Journal Article
%A T. I. Zaitseva
%T Self-similar splines
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 925-927
%V 79
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2024_79_5_a5/
%G en
%F RM_2024_79_5_a5
T. I. Zaitseva. Self-similar splines. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 925-927. http://geodesic.mathdoc.fr/item/RM_2024_79_5_a5/

[1] K. Gröchenig and A. Haas, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl

[2] A. Cohen, K. Gröchenig, and L. Villemoes, Constr. Approx., 15:2 (1999), 241–255 | DOI | MR | Zbl

[3] Rong-Qing Jia and Qingtang Jiang, SIAM J. Matrix Anal. Appl., 24:4 (2003), 1071–1109 | DOI | MR | Zbl

[4] T. I. Zaitseva, Izv. Math., 87:2 (2023), 284–325 | DOI | MR | Zbl

[5] I. Kirat and Ka-Sing Lau, Discrete Comput. Geom., 28:1 (2002), 49–73 | DOI | MR | Zbl