Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 847-917
Voir la notice de l'article provenant de la source Math-Net.Ru
Results of the last 12 years obtained by the authors and their co-authors are discussed. The main achievement of this period of time was establishing Vitushkin-type criteria in terms of capacities for the $C^m$-approximability of functions by solutions of homogeneous elliptic equations of the second order, with constant complex coefficients on compact subsets of $\mathbb R^N$, in all dimensions $N\in\{2,3,\dots\}$ and for all smoothness exponents $m\in[0,2)$. These criteria are stated for individual functions. They yield directly the relevant criteria for classes of functions established previously by Mateu, Orobitg, Netrusov, and Verdera (1996, apart from $m=0$ and $m=1$). Another significant result established during these years was an integro-geometric description of all capacities arising in these criteria in the cases $m=0$ (Mazalov, 2024) and $m=1$ (Tolsa, 2021). In particular, these capacities were shown to be subadditive.
Bibliography: 69 titles.
Keywords:
homogeneous second-order elliptic operator $\mathcal L$, fundamental solution, $C^m$-approximation, Vituskin-type localization operator, Lip${}^m$-$\mathcal L$-capacity, $C^m$-$\mathcal L$-capacity, $\mathcal L$-oscillation.
Mots-clés : Hausdorff content
Mots-clés : Hausdorff content
@article{RM_2024_79_5_a2,
author = {M. Ya. Mazalov and P. V. Paramonov and K. Yu. Fedorovskiy},
title = {Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {847--917},
publisher = {mathdoc},
volume = {79},
number = {5},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_5_a2/}
}
TY - JOUR
AU - M. Ya. Mazalov
AU - P. V. Paramonov
AU - K. Yu. Fedorovskiy
TI - Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2024
SP - 847
EP - 917
VL - 79
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/RM_2024_79_5_a2/
LA - en
ID - RM_2024_79_5_a2
ER -
%0 Journal Article
%A M. Ya. Mazalov
%A P. V. Paramonov
%A K. Yu. Fedorovskiy
%T Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 847-917
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2024_79_5_a2/
%G en
%F RM_2024_79_5_a2
M. Ya. Mazalov; P. V. Paramonov; K. Yu. Fedorovskiy. Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 847-917. http://geodesic.mathdoc.fr/item/RM_2024_79_5_a2/