Mots-clés : exceptional collections, Lefschetz decompositions
@article{RM_2024_79_5_a1,
author = {A. V. Fonarev},
title = {Derived categories of {Grassmannians:} a survey},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {807--845},
year = {2024},
volume = {79},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_5_a1/}
}
A. V. Fonarev. Derived categories of Grassmannians: a survey. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 807-845. http://geodesic.mathdoc.fr/item/RM_2024_79_5_a1/
[1] A. A. Beilinson, “Coherent sheaves on $\mathbf P^n$ and problems of linear algebra”, Funct. Anal. Appl., 12:3 (1978), 214–216 | DOI | MR | Zbl
[2] P. Belmans, A. Kuznetsov, and Smirnov, “Derived categories of the Cayley plane and the coadjoint Grassmannian of type F”, Transform. Groups, 28:1 (2023), 9–34 | DOI | MR | Zbl
[3] V. Benedetti, D. Faenzi, and M. Smirnov, Derived category of the spinor 15-fold, 2023, 22 pp., arXiv: 2310.01090
[4] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl
[5] A. I. Bondal and M. M. Kapranov, “Homogeneous bundles”, Helices and vector bundles, Proc. Semin. Rudakov, London Math. Soc. Lecture Note Ser., 148, Cambridge Univ. Press, Cambridge, 1990, 45–55 | DOI | MR | Zbl
[6] A. I. Bondal and M. M. Kapranov, “Representable functors, Serre functors, and mutations”, Math. USSR-Izv., 35:3 (1990), 519–541 | DOI | MR | Zbl
[7] R.-O. Buchweitz, G. J. Leuschke, and M. Van den Bergh, “On the derived category of Grassmannians in arbitrary characteristic”, Compos. Math., 151:7 (2015), 1242–1264 | DOI | MR | Zbl
[8] W. Cattani, On the derived category of $\operatorname{IGr}(3,9)$, 2023, 39 pp., arXiv: 2305.06867
[9] A. I. Efimov, “Derived categories of Grassmannians over integers and modular representation theory”, Adv. Math., 304 (2017), 179–226 | DOI | MR | Zbl
[10] D. Faenzi and L. Manivel, “On the derived category of the Cayley plane II”, Proc. Amer. Math. Soc., 143:3 (2015), 1057–1074 | DOI | MR | Zbl
[11] A. V. Fonarev, “Minimal Lefschetz decompositions of the derived categories for Grassmannians”, Izv. Math., 77:5 (2013), 1044–1065 | DOI | MR | Zbl
[12] A. V. Fonarev, “Exceptional vector bundles on Grassmannians”, Russian Math. Surveys, 69:4 (2014), 768–770 | DOI | MR | Zbl
[13] A. V. Fonarev, “On the Kuznetsov–Polishchuk conjecture”, Proc. Steklov Inst. Math., 290:1 (2015), 11–25 | DOI | MR | Zbl
[14] A. Fonarev, “On the bounded derived category of $\operatorname{IGr}(3,7)$”, Transform. Groups, 27:1 (2022), 89–112 | DOI | MR | Zbl
[15] A. Fonarev, “Full exceptional collections on Lagrangian Grassmannians”, Int. Math. Res. Not. IMRN, 2022:2 (2022), 1081–1122 | DOI | MR | Zbl
[16] A. V. Fonarev, “Dual exceptional collections on Lagrangian Grassmannians”, Sb. Math., 214:12 (2023), 1779–1800 | DOI | MR | Zbl
[17] A. V. Fonarev, On Dubrovin's conjecture for Grassmannians, Manuscript
[18] L. A. Guseva, “On the derived category of $\operatorname{IGr}(3,8)$”, Sb. Math., 211:7 (2020), 922–955 | DOI | MR | Zbl
[19] M. M. Kapranov, “On the derived category of coherent sheaves on Grassmann manifolds”, Math. USSR-Izv., 24:1 (1985), 183–192 | DOI | MR | Zbl
[20] M. M. Kapranov, “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92:3 (1988), 479–508 | DOI | MR | Zbl
[21] A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547 | DOI | MR | Zbl
[22] A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 157–220 | DOI | MR | Zbl
[23] A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182 | DOI | MR | Zbl
[24] A. Kuznetsov and A. Polishchuk, “Exceptional collections on isotropic Grassmannians”, J. Eur. Math. Soc. (JEMS), 18:3 (2016), 507–574 | DOI | MR | Zbl
[25] A. Kuznetsov and M. Smirnov, “On residual categories for Grassmannians”, Proc. Lond. Math. Soc. (3), 120:5 (2020), 617–641 | DOI | MR | Zbl
[26] A. Kuznetsov and M. Smirnov, “Residual categories for (co)adjoint Grassmannians in classical types”, Compos. Math., 157:6 (2021), 1172–1206 | DOI | MR | Zbl
[27] L. Manivel, “On the derived category of the Cayley plane”, J. Algebra, 330:1 (2011), 177–187 | DOI | MR | Zbl
[28] I. A. Mihai, “Odd symplectic flag manifolds”, Transform. Groups, 12:3 (2007), 573–599 | DOI | MR | Zbl
[29] R. Moschetti and M. Rampazzo, “Fullness of the Kuznetsov–Polishchuk exceptional collection for the spinor tenfold”, Algebr. Represent. Theory, 27:2 (2024), 1063–1081 | DOI | MR | Zbl
[30] A. Novikov, Lefschetz exceptional collections on isotropic Grassmannians, Master's thesis, HSE Univ., Moscow, 2020, 43 pp.
[31] D. O. Orlov, “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41:1 (1993), 133–141 | DOI | MR | Zbl
[32] D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Moscow Math. J., 9:1 (2009), 143–149 | DOI | MR | Zbl
[33] G. Ottaviani, “Spinor bundles on quadrics”, Trans. Amer. Math. Soc., 307:1 (1988), 301–316 | DOI | MR | Zbl
[34] A. Polishchuk, “$K$-theoretic exceptional collections at roots of unity”, J. K-Theory, 7:1 (2011), 169–201 | DOI | MR | Zbl
[35] A. Polishchuk and A. Samokhin, “Full exceptional collections on the Lagrangian Grassmannians $LG(4,8)$ and $LG(5,10)$”, J. Geom. Phys., 61:10 (2011), 1996–2014 | DOI | MR | Zbl
[36] A. V. Samokhin, “The derived category of coherent sheaves on $LG_3^{\mathbf C}$”, Russian Math. Surveys, 56:3 (2001), 592–594 | DOI | MR | Zbl
[37] A. Samokhin, “Some remarks on the derived categories of coherent sheaves on homogeneous spaces”, J. Lond. Math. Soc. (2), 76:1 (2007), 122–134 | DOI | MR | Zbl
[38] M. Smirnov, On the derived category of the adjoint Grassmannian of type F, 2023 (v1 – 2021), 31 pp., arXiv: 2107.07814
[39] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Math., 149, Cambridge Univ. Press, Cambridge, 2003, xiv+371 pp. | DOI | MR | Zbl