Nonlinear Fokker--Planck--Kolmogorov equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 751-805

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a survey of recent investigations on nonlinear Fokker–Planck–Kolmogorov equations of elliptic and parabolic types and contains a number of new results. We discuss in detail the problems of existence and uniqueness of solutions, various estimates of solutions, connections with linear equations, and the convergence of solutions of parabolic equations to stationary solutions. Bibliography: 116 items.
Keywords: Cauchy problem, Kantorovich metric.
Mots-clés : Fokker–Planck–Kolmogorov equation, elliptic equation, parabolic equation
@article{RM_2024_79_5_a0,
     author = {V. I. Bogachev and S. V. Shaposhnikov},
     title = {Nonlinear {Fokker--Planck--Kolmogorov} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {751--805},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - S. V. Shaposhnikov
TI  - Nonlinear Fokker--Planck--Kolmogorov equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 751
EP  - 805
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/
LA  - en
ID  - RM_2024_79_5_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A S. V. Shaposhnikov
%T Nonlinear Fokker--Planck--Kolmogorov equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 751-805
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/
%G en
%F RM_2024_79_5_a0
V. I. Bogachev; S. V. Shaposhnikov. Nonlinear Fokker--Planck--Kolmogorov equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 751-805. http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/