Nonlinear Fokker--Planck--Kolmogorov equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 751-805
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper gives a survey of recent investigations on nonlinear Fokker–Planck–Kolmogorov equations of elliptic and parabolic types and contains a number of new results. We discuss in detail the problems of existence and uniqueness of solutions, various estimates of solutions, connections with linear equations, and the convergence of solutions of parabolic equations to stationary solutions.
Bibliography: 116 items.
Keywords:
Cauchy problem, Kantorovich metric.
Mots-clés : Fokker–Planck–Kolmogorov equation, elliptic equation, parabolic equation
Mots-clés : Fokker–Planck–Kolmogorov equation, elliptic equation, parabolic equation
@article{RM_2024_79_5_a0,
author = {V. I. Bogachev and S. V. Shaposhnikov},
title = {Nonlinear {Fokker--Planck--Kolmogorov} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {751--805},
publisher = {mathdoc},
volume = {79},
number = {5},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/}
}
TY - JOUR AU - V. I. Bogachev AU - S. V. Shaposhnikov TI - Nonlinear Fokker--Planck--Kolmogorov equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 751 EP - 805 VL - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/ LA - en ID - RM_2024_79_5_a0 ER -
V. I. Bogachev; S. V. Shaposhnikov. Nonlinear Fokker--Planck--Kolmogorov equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 751-805. http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/