Nonlinear Fokker–Planck–Kolmogorov equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 751-805 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a survey of recent investigations on nonlinear Fokker–Planck–Kolmogorov equations of elliptic and parabolic types and contains a number of new results. We discuss in detail the problems of existence and uniqueness of solutions, various estimates of solutions, connections with linear equations, and the convergence of solutions of parabolic equations to stationary solutions. Bibliography: 116 items.
Keywords: Cauchy problem, Kantorovich metric.
Mots-clés : Fokker–Planck–Kolmogorov equation, elliptic equation, parabolic equation
@article{RM_2024_79_5_a0,
     author = {V. I. Bogachev and S. V. Shaposhnikov},
     title = {Nonlinear {Fokker{\textendash}Planck{\textendash}Kolmogorov} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {751--805},
     year = {2024},
     volume = {79},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - S. V. Shaposhnikov
TI  - Nonlinear Fokker–Planck–Kolmogorov equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 751
EP  - 805
VL  - 79
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/
LA  - en
ID  - RM_2024_79_5_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A S. V. Shaposhnikov
%T Nonlinear Fokker–Planck–Kolmogorov equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 751-805
%V 79
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/
%G en
%F RM_2024_79_5_a0
V. I. Bogachev; S. V. Shaposhnikov. Nonlinear Fokker–Planck–Kolmogorov equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 5, pp. 751-805. http://geodesic.mathdoc.fr/item/RM_2024_79_5_a0/

[1] N. U. Ahmed and Xinhong Ding, “On invariant measures of nonlinear Markov processes”, J. Appl. Math. Stochastic Anal., 6:4 (1993), 385–406 | DOI | MR | Zbl

[2] F. Anceschi and Yuzhe Zhu, “On a spatially inhomogeneous nonlinear Fokker–Planck equation: Cauchy problem and diffusion asymptotics”, Anal. PDE, 17:2 (2024), 379–420 | DOI | MR | Zbl

[3] V. Barbu, “Generalized solutions to nonlinear Fokker–Planck equations”, J. Differential Equations, 261:4 (2016), 2446–2471 | DOI | MR | Zbl

[4] V. Barbu, Semigroup approach to nonlinear diffusion equations, World Sci. Publ., Hackensack, NJ, 2022, vii+212 pp. | DOI | MR | Zbl

[5] V. Barbu, “The Trotter product formula for nonlinear Fokker–Planck flows”, J. Differential Equations, 345 (2023), 314–333 | DOI | MR | Zbl

[6] V. Barbu and M. Röckner, “Nonlinear Fokker–Planck equations driven by Gaussian linear multiplicative noise”, J. Differential Equations, 265:10 (2018), 4993–5030 | DOI | MR | Zbl

[7] V. Barbu and M. Röckner, “Probabilistic representation for solutions to nonlinear Fokker–Planck equations”, SIAM J. Math. Anal., 50:4 (2018), 4246–4260 | DOI | MR | Zbl

[8] V. Barbu and M. Röckner, “Solutions for nonlinear Fokker–Planck equations with measures as initial data and McKean–Vlasov equations”, J. Funct. Anal., 280:7 (2021), 108926, 35 pp. | DOI | MR | Zbl

[9] V. Barbu and M. Röckner, “Uniqueness for nonlinear Fokker–Planck equations and weak uniqueness for McKean–Vlasov SDEs”, Stoch. Partial Differ. Equ. Anal. Comput., 9:3 (2021), 702–713 ; correction: 11:1 (2023), 426–431 | DOI | MR | Zbl | DOI | MR | Zbl

[10] V. Barbu and M. Röckner, “The invariance principle for nonlinear Fokker–Planck equations”, J. Differential Equations, 315 (2022), 200–221 | DOI | MR | Zbl

[11] V. Barbu and M. Röckner, “Uniqueness for nonlinear Fokker–Planck equations and for McKean–Vlasov SDEs: the degenerate case”, J. Funct. Anal., 285:4 (2023), 109980, 37 pp. | DOI | MR | Zbl

[12] V. Barbu and M. Röckner, “The evolution to equilibrium of solutions to nonlinear Fokker–Planck equation”, Indiana Univ. Math. J., 72:1 (2023), 89–131 | DOI | MR | Zbl

[13] Ya. I. Belopol'skaya, “Systems of nonlinear backward and forward Kolmogorov equations: generalized solutions”, Theory Probab. Appl., 66:1 (2021), 15–43 | DOI | MR | Zbl

[14] A. L. Bertozzi, J. A. Carrillo, and T. Laurent, “Blow-up in multidimensional aggregation equations with mildly singular interaction kernels”, Nonlinearity, 22:3 (2009), 683–710 | DOI | MR | Zbl

[15] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl

[16] V. I. Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of research”, Russian Math. Surveys, 77:5 (2022), 769–817 | DOI | MR | Zbl

[17] V. I. Bogachev, G. Da Prato, M. Röckner, and S. V. Shaposhnikov, “Nonlinear evolution equations for measures on infinite dimensional spaces”, Stochastic partial differential equations and applications, Quad. Mat., 25, Dept. Math., Seconda Univ. Napoli, Caserta, 2010, 51–64 | MR | Zbl

[18] V. I. Bogachev, A. I. Kirillov, and S. V. Shaposhnikov, “The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations”, Math. Notes, 96:5 (2014), 855–863 | DOI | MR | Zbl

[19] V. I. Bogachev, A. I. Kirillov, and S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Theory Probab. Appl., 62:1 (2018), 12–34 | DOI | MR | Zbl

[20] V. I. Bogachev, A. V. Kolesnikov, and S. V.Shaposhnikov, Monge and Kantorovich problems of optimal transportation, Regulyarnaya i Khaotichaskaya Dinanika, Institute for Computer Studies, Moscow–Izhevsk, 2023, 664 pp. (Russian)

[21] V. I. Bogachev, T. I. Krasovitskii, and S. V. Shaposhnikov, “On uniqueness of probability solutions of the Fokker–Planck–Kolmogorov equation”, Sb. Math., 212:6 (2021), 745–781 | DOI | MR | Zbl

[22] V. I. Bogachev, N. V. Krylov, and M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078 | DOI | MR | Zbl

[23] V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl

[24] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “Nonlinear evolution and transport equations for measures”, Dokl. Math., 80:3 (2009), 785–789 | DOI | MR | Zbl

[25] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300 | DOI | MR | Zbl

[26] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “The Poisson equation and estimates for distances between stationary distributions of diffusions”, J. Math. Sci. (N.Y.), 232:3 (2018), 254–282 | DOI | MR | Zbl

[27] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “Convergence to stationary measures in nonlinear Fokker–Planck–Kolmogorov equations”, Dokl. Math., 98:2 (2018), 452–457 | DOI | MR | Zbl

[28] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “Convergence in variation of solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary measures”, J. Funct. Anal., 276:12 (2019), 3681–3713 | DOI | MR | Zbl

[29] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “On convergence to stationary distributions for solutions of nonlinear Fokker–Planck–Kolmogorov equations”, J. Math. Sci. (N. Y.), 242:1 (2019), 69–84 | DOI | MR | Zbl

[30] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations”, J. Dynam. Differential Equations, 33:2 (2021), 715–739 | DOI | MR | Zbl

[31] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes”, Theory Probab. Appl., 68:3 (2023), 342–369 | DOI | MR | Zbl

[32] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations”, Comm. Partial Differential Equations, 48:1 (2023), 119–149 | DOI | MR | Zbl

[33] V. I. Bogachev, D. I. Salakhov, and S. V. Shaposhnikov, “The Fokker–Planck–Kolmogorov equation with nonlinear terms of local and nonlocal type”, St. Petersburg Math. J., 35:5 (2024), 749–767 | DOI

[34] V. I. Bogachev and O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., Springer, Cham, 2017, x+456 pp. | DOI | MR | Zbl

[35] F. Bolley, I. Gentil, and A. Guillin, “Convergence to equilibrium in Wasserstein distance for Fokker–Planck equations”, J. Funct. Anal., 263:8 (2012), 2430–2457 | DOI | MR | Zbl

[36] F. Bolley, I. Gentil, and A. Guillin, “Uniform convergence to equilibrium for granular media”, Arch. Ration. Mech. Anal., 208:2 (2013), 429–445 | DOI | MR | Zbl

[37] F. Bouchut, “Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions”, J. Funct. Anal., 111:1 (1993), 239–258 | DOI | MR | Zbl

[38] O. A. Butkovsky, “On ergodic properties of nonlinear Markov chains and stochastic McKean–Vlasov equations”, Theory Probab. Appl., 58:4 (2014), 661–674 | DOI | MR | Zbl

[39] J. A. Cañizo, J. A. Carrillo, P. Laurençot, and J. Rosado, “The Fokker–Planck equation for bosons in 2D: well-posedness and asymptotic behavior”, Nonlinear Anal., 137 (2016), 291–305 | DOI | MR | Zbl

[40] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions, The master equation and the convergence problem in mean field games, Ann. of Math. Stud., 201, Princeton Univ. Press, Princeton, NJ, 2019, x+212 pp. | DOI | MR | Zbl

[41] R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications, v. I, Probab. Theory Stoch. Model., 83, Mean field FBSDEs, control, and games, Springer, Cham, 2018, xxv+713 pp. ; v. II, 84, Mean field games with common noise and master equations, xxiv+697 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[42] J. A. Carrillo, A. Clini, and S. Solem, “The mean field limit of stochastic differential equation systems modeling grid cells”, SIAM J. Math. Anal., 55:4 (2023), 3602–3634 | DOI | MR | Zbl

[43] J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev, “Global-in-time weak measure solutions and finite-time aggregation for non-local interaction equations”, Duke Math. J., 156:2 (2011), 229–271 | DOI | MR | Zbl

[44] J. A. Carrillo, R. Duan, and A. Moussa, “Global classical solutions close to equilibrium to the Vlasov–Fokker–Planck–Euler system”, Kinet. Relat. Models, 4:1 (2011), 227–258 | DOI | MR | Zbl

[45] J. A. Carrillo, D. Gómez-Castro, and J. L. Vázquez, “Infinite-time concentration in aggregation–diffusion equations with a given potential”, J. Math. Pures Appl. (9), 157 (2022), 346–398 | DOI | MR | Zbl

[46] J. A. Carrillo, K. Hopf, and J. L. Rodrigo, “On the singularity formation and relaxation to equilibrium in 1D Fokker–Planck model with superlinear drift”, Adv. Math., 360 (2020), 106883, 66 pp. | DOI | MR | Zbl

[47] J. A. Carrillo, P. Laurençot, and J. Rosado, “Fermi–Dirac–Fokker–Planck equation: well-posedness long-time asymptotics”, J. Differential Equations, 247:8 (2009), 2209–2234 | DOI | MR | Zbl

[48] J. A. Carrillo, S. Lisini, G. Savaré, and D. Slepčev, “Nonlinear mobility continuity equations and generalized displacement convexity”, J. Funct. Anal., 258:4 (2010), 1273–1309 | DOI | MR | Zbl

[49] J. A. Carrillo, J. Rosado, and F. Salvarani, “1D nonlinear Fokker–Planck equations for fermions and bosons”, Appl. Math. Lett., 21:2 (2008), 148–154 | DOI | MR | Zbl

[50] P.-E. Chaudru de Raynal and N. Frikha, “Well-posedness for some non-linear SDEs and related PDE on the Wasserstein space”, J. Math. Pures Appl. (9), 159 (2022), 1–167 | DOI | MR | Zbl

[51] M. Coghi and B. Gess, “Stochastic nonlinear Fokker–Planck equations”, Nonlinear Anal., 187 (2019), 259–278 | DOI | MR | Zbl

[52] M. Colombo, G. Crippa, M. Graffe, and L. V. Spinolo, “Recent results on the singular local limit for nonlocal conservation laws”, Hyperbolic problems: theory, numerics, applications, AIMS Ser. Appl. Math., 10, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2020, 369–376 | MR | Zbl

[53] M. Dieckmann, “A restricted superposition principle for (non-)linear Fokker–Planck–Kolmogorov equations on Hilbert spaces”, J. Evol. Equ., 22:2 (2022), 55, 28 pp. | DOI | MR | Zbl

[54] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl

[55] Hongjie Dong, L. Escauriaza, and Seick Kim, “On $C^1$, $C^2$, and weak type-$(1,1)$ estimates for linear elliptic operators. II”, Math. Ann., 370:1-2 (2018), 447–489 | DOI | MR | Zbl

[56] Hongjie Dong, L. Escauriaza, and Seick Kim, “On $C^{1/2,1}$, $C^{1,2}$, and $C^{0,0}$ estimates for linear parabolic operators”, J. Evol. Equ., 21:4 (2021), 4641–4702 | DOI | MR | Zbl

[57] Hongjie Dong and Seick Kim, “On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators”, Comm. Partial Differential Equations, 42:3 (2017), 417–435 | DOI | MR | Zbl

[58] A. Eberle, “Reflection couplings and contraction rates for diffusions”, Probab. Theory Related Fields, 166:3-4 (2016), 851–886 | DOI | MR | Zbl

[59] A. Eberle, A. Guillin, and R. Zimmer, “Quantitative Harris-type theorems for diffusions and McKean–Vlasov processes”, Trans. Amer. Math. Soc., 371:10 (2019), 7135–7173 | DOI | MR | Zbl

[60] M. Fathi and M. Mikulincer, “Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 23:3 (2022), 1417–1445 | DOI | MR | Zbl

[61] F. Flandoli, M. Leocata, and C. Ricci, “The Navier–Stokes–Vlasov–Fokker–Planck system as a scaling limit of particles in a fluid”, J. Math. Fluid Mech., 23:2 (2021), 40, 39 pp. | DOI | MR | Zbl

[62] T. D. Frank, Nonlinear Fokker–Planck equations. Fundamentals and applications, Springer Ser. Synergetics, Springer-Verlag, Berlin, 2005, xii+404 pp. | DOI | MR | Zbl

[63] T. D. Frank, “Linear and nonlinear Fokker–Planck equations”, Synergetics, Encycl. Complex. Syst. Sci., Springer, New York, 2020, 149–182 | DOI | MR

[64] T. Funaki, “A certain class of diffusion processes associated with nonlinear parabolic equations”, Z. Wahrsch. Verw. Gebiete, 67:3 (1984), 331–348 | DOI | MR | Zbl

[65] G. Furioli, A. Pulvirenti, E. Terraneo, and G. Toscani, “Fokker–Planck equations in the modeling of socio-economic phenomena”, Math. Models Methods Appl. Sci., 27:1 (2017), 115–158 | DOI | MR | Zbl

[66] S. Grube, “Strong solutions to McKean–Vlasov SDEs with coefficients of Nemytskii type: the time-dependent case”, J. Evol. Equ., 24:2 (2024), 37, 14 pp. | DOI | MR | Zbl

[67] A. Guillin, P. Le Bris, and P. Monmarché, “Convergence rates for the Vlasov–Fokker–Planck equation and uniform in time propagation of chaos in non convex cases”, Electron. J. Probab., 27 (2022), 124, 44 pp. | DOI | MR | Zbl

[68] W. R. P. Hammersley, D. Šiška, and Ł. Szpruch, “McKean–Vlasov SDEs under measure dependent Lyapunov conditions”, Ann. Inst. Henri Poincaré Probab. Stat., 57:2 (2021), 1032–1057 | DOI | MR | Zbl

[69] K. Hopf, “Singularities in $L^1$-supercritical Fokker–Planck equations: a qualitative analysis”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 41:2 (2024), 357–403 | DOI | MR | Zbl

[70] Xing Huang, Panpan Ren, and Feng-Yu Wang, “Distribution dependent stochastic differential equations”, Front. Math. China, 16:2 (2021), 257–301 | DOI | MR | Zbl

[71] Xing Huang, M. Röckner, and Feng-Yu Wang, “Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs”, Discrete Contin. Dyn. Syst., 39:6 (2019), 3017–3035 | DOI | MR | Zbl

[72] Xing Huang and Feng-Yu Wang, “Singular McKean–Vlasov (reflecting) SDEs with distribution dependent noise”, J. Math. Anal. Appl., 514:1 (2022), 126301, 21 pp. | DOI | MR | Zbl

[73] Sukjung Hwang and Seick Kim, “Green's function for second order elliptic equations in non-divergence form”, Potential Anal., 52:1 (2020), 27–39 | DOI | MR | Zbl

[74] E. Issoglio and F. Russo, “McKean SDEs with singular coefficients”, Ann. Inst. Henri Poincaré Probab. Stat., 59:3 (2023), 1530–1548 | DOI | MR | Zbl

[75] Min Ji, Zhongwei Shen, and Yingfei Yi, “Convergence to equilibrium in Fokker–Planck equations”, J. Dynam. Differential Equations, 31:3 (2019), 1591–1615 | DOI | MR | Zbl

[76] A. Jüngel, Entropy methods for diffusive partial differential equations, SpringerBriefs Math., Springer, Cham, 2016, viii+139 pp. | DOI | MR | Zbl

[77] M. Kac, “Foundations of kinetic theory”, Proceedings of the third Berkeley symposium on mathematical statistics and probability, 1954–1955, v. 3, Univ. California Press, Berkeley–Los Angeles, CA, 1956, 171–197 | DOI | MR | Zbl

[78] E. F. Keller and L. A. Segel, “Initiation of slime mold aggregation viewed as an instability”, J. Theoret. Biol., 26:3 (1970), 399–415 | DOI | MR | Zbl

[79] A. Kiselev, F. Nazarov, L. Ryzhik, and Yao Yao, “Chemotaxis and reactions in biology”, J. Eur. Math. Soc. (JEMS), 25:7 (2023), 2641–2696 | DOI | MR | Zbl

[80] V. Kolokoltsov, Differential equations on measures and functional spaces, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser/Springer, Cham, 2019, xvi+525 pp. | DOI | MR | Zbl

[81] S. Kondratyev and D. Vorotnikov, “Nonlinear Fokker–Planck equations with reaction as gradient flows of the free energy”, J. Funct. Anal., 278:2 (2020), 108310, 40 pp. | DOI | MR | Zbl

[82] A. A. Kon'kov, “Stabilization of solutions of the nonlinear Fokker–Planck equation”, J. Math. Sci. (N. Y.), 197:3 (2014), 358–366 | DOI | MR | Zbl

[83] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | MR | Zbl

[84] V. V. Kozlov, “The Vlasov kinetic equation, dynamics of continuum and turbulence”, Regul. Chaotic Dyn., 16:6 (2011), 602–622 | DOI | MR | Zbl

[85] Hailiang Li and G. Toscani, “Long-time asymptotics of kinetic models of granular flows”, Arch. Ration. Mech. Anal., 172:3 (2004), 407–428 | DOI | MR | Zbl

[86] Jie Liao, Qianrong Wang, and Xiongfeng Yang, “Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker–Planck equations”, J. Stat. Phys., 173:1 (2018), 222–241 | DOI | MR | Zbl

[87] S. Lisini and A. Marigonda, “On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals”, Manuscripta Math., 133:1-2 (2010), 197–224 | DOI | MR | Zbl

[88] O. A. Manita, “Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces”, J. Math. Sci. (N. Y.), 216:1 (2016), 120–135 | DOI | MR | Zbl

[89] O. A. Manita, “Estimates for transportation costs along solutions to Fokker–Planck–Kolmogorov equations with dissipative drifts”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28:3 (2017), 601–618 | DOI | MR | Zbl

[90] O. A. Manita, M. S. Romanov, and S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations”, Nonlinear Anal., 128 (2015), 199–226 | DOI | MR | Zbl

[91] O. A. Manita, M. S. Romanov, and S. V. Shaposhnikov, “Estimates of distances between solutions of Fokker–Planck–Kolmogorov equations with partially degenerate diffusion matrices”, Theory Stoch. Process., 23:2 (2018), 41–54 | MR | Zbl

[92] O. A. Manita and S. V. Shaposhnikov, “Nonlinear parabolic equations for measures”, St. Petersburg Math. J., 25:1 (2014), 43–62 | DOI | MR | Zbl

[93] H. P. McKean, Jr., “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Nat. Acad. Sci. U.S.A., 56:6 (1966), 1907–1911 | DOI | MR | Zbl

[94] H. P. McKean, Jr., “Propagation of chaos for a class of non-linear parabolic equations”, Stochastic differential equations, Lecture Series in Differential Equations, Session 7, Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, Arlington, VA, 1967, 41–57 | MR | Zbl

[95] S. Mehri and W. Stannat, “Weak solutions to Vlasov–McKean equations under Lyapunov-type conditions”, Stoch. Dyn., 19:6 (2019), 1950042, 23 pp. | DOI | MR | Zbl

[96] Y. Mishura and A. Veretennikov, “Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations”, Theory Probab. Math. Statist., 103 (2020), 59–101 | DOI | MR | Zbl

[97] È. Mitidieri and S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[98] È. Mitidieri and S. I. Pokhozhaev, “Liouville theorems for some classes of nonlinear nonlocal problems”, Proc. Steklov Inst. Math., 248:1 (2005), 158–178 | MR | Zbl

[99] A. Mogilner and L. Edelstein-Keshet, “A non-local model for a swarm”, J. Math. Biol., 38:6 (1999), 534–570 | DOI | MR | Zbl

[100] A. Okubo and S. A. Levin, Diffusion and ecological problems: modern perspectives, Interdiscip. Appl. Math., 14, 2nd ed., Springer-Verlag, New York, 2001, xx+467 pp. | DOI | MR | Zbl

[101] C. Olivera, A. Richard, and M. Tomašević, “Quantitative particle approximation of nonlinear Fokker–Planck equations with singular kernel”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 24:2 (2023), 691–749 | DOI | MR | Zbl

[102] R. Precup and P. Rubbioni, “Stationary solutions of Fokker–Planck equations with nonlinear reaction terms in bounded domains”, Potential Anal., 57:2 (2022), 181–199 | DOI | MR | Zbl

[103] M. Rehmeier, “Flow selections for (nonlinear) Fokker–Planck–Kolmogorov equations”, J. Differential Equations, 328 (2022), 105–132 | DOI | MR | Zbl

[104] M. Rehmeier, “Linearization and a superposition principle for deterministic and stochastic nonlinear Fokker–Planck–Kolmogorov equations”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 24:3 (2023), 1705–1739 | DOI | MR | Zbl

[105] Panpan Ren, M. Röckner, and Feng-Yu Wang, “Linearization of nonlinear Fokker–Planck equations and applications”, J. Differential Equations, 322 (2022), 1–37 | DOI | MR | Zbl

[106] Zhenjie Ren, Xiaolu Tan, N. Touzi, and Junjian Yang, “Entropic optimal planning for path-dependent mean field games”, SIAM J. Control Optim., 61:3 (2023), 1415–1437 | DOI | MR | Zbl

[107] K. Schuh, “Global contractivity for Langevin dynamics with distribution-dependent forces and uniform in time propagation of chaos”, Ann. Inst. Henri Poincaré Probab. Stat., 60:2 (2024), 753–789 | DOI | MR | Zbl

[108] S. V. Shaposhnikov, “Nonlinear Fokker–Planck–Kolmogorov equations for measures”, Stochastic partial differential equations and related fields, Springer Proc. Math. Stat., 229, Springer, Cham, 2018, 367–379 | DOI | MR | Zbl

[109] Zheng Sun, J. A. Carrillo, and Chi-Wang Shu, “A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials”, J. Comput. Phys., 352:4 (2018), 76–104 | DOI | MR | Zbl

[110] L. G. Tonoyan, “Nonlinear elliptic equations for measures”, Dokl. Math., 84:1 (2011), 558–561 | DOI | MR | Zbl

[111] G. Toscani, “Finite time blow up in Kaniadakis–Quarati model of Bose–Einstein particles”, Comm. Partial Differential Equations, 37:1 (2012), 77–87 | DOI | MR | Zbl

[112] A. Tosin and M. Zanella, “Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles”, Multiscale Model. Simul., 17:2 (2019), 716–749 | DOI | MR | Zbl

[113] Alvin Tse, “Higher order regularity of nonlinear Fokker–Planck PDEs with respect to the measure component”, J. Math. Pures Appl. (9), 150 (2021), 134–180 | DOI | MR | Zbl

[114] V. Vedenyapin, A. Sinitsyn, and E. Dulov, Kinetic Boltzmann, Vlasov and related equations, Elsevier, Inc., Amsterdam, 2011, xvi+304 pp. | DOI | MR | Zbl

[115] A. Yu. Veretennikov, “On ergodic measures for McKean–Vlasov stochastic equations”, Monte Carlo and quasi-Monte Carlo methods 2004, Springer-Verlag, Berlin, 2006, 471–486 | DOI | MR | Zbl

[116] Feng-Yu Wang, “Distribution dependent reflecting stochastic differential equations”, Sci. China Math., 66:11 (2023), 2411–2456 | DOI | MR | Zbl