@article{RM_2024_79_4_a6,
author = {S. V. Astashkin and K. V. Lykov},
title = {One property of the multiple {Rademacher} system and its applications to problems of graph discrepancy},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {727--729},
year = {2024},
volume = {79},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_4_a6/}
}
TY - JOUR AU - S. V. Astashkin AU - K. V. Lykov TI - One property of the multiple Rademacher system and its applications to problems of graph discrepancy JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 727 EP - 729 VL - 79 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2024_79_4_a6/ LA - en ID - RM_2024_79_4_a6 ER -
%0 Journal Article %A S. V. Astashkin %A K. V. Lykov %T One property of the multiple Rademacher system and its applications to problems of graph discrepancy %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 727-729 %V 79 %N 4 %U http://geodesic.mathdoc.fr/item/RM_2024_79_4_a6/ %G en %F RM_2024_79_4_a6
S. V. Astashkin; K. V. Lykov. One property of the multiple Rademacher system and its applications to problems of graph discrepancy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 4, pp. 727-729. http://geodesic.mathdoc.fr/item/RM_2024_79_4_a6/
[1] M. Talagrand, Mean field models for spin glasses, v. I, Ergeb. Math. Grenzgeb. (3), 54, Basic examples, Springer, Heidelberg, 2011, xviii+485 pp. ; v. II, Ergeb. Math. Grenzgeb. (3), 55, Advanced replica-symmetry and low temperature, 2011, xii+629 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[2] S. V. Astashkin and K. V. Lykov, Izv. Math., 88:1 (2024), 1–17 | DOI | MR | Zbl
[3] S. V. Astashkin, The Rademacher system in function spaces, Birkhäuser/Springer, Cham, 2020, xx+559 pp. | DOI | MR | Zbl
[4] P. Billard, S. Kwapień, A. Pełczyński, and Ch. Samuel, Texas functional analysis seminar 1985–1986 (Austin, TX 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 13–35 | MR | Zbl
[5] V. H. de la Peña and E. Giné, Decoupling. From dependence to independence. Randomly stopped processes. $U$-statistics and processes. Martingales and beyond, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1999, xvi+392 pp. | DOI | MR | Zbl
[6] R. Adamczak, J. Prochno, M. Strzelecka, and M. Strzelecki, Math. Ann., 388:4 (2024), 3463–3527 | DOI | MR | Zbl
[7] G. Bennett, Duke Math. J., 44:3 (1977), 603–639 | DOI | MR | Zbl
[8] N. Alon and A. Naor, STOC {'}04: Proceedings of the 36th annual ACM symposium on theory of computing, ACM Press, New York, 2004, 72–80 | DOI | MR | Zbl
[9] N. Alon and J. H. Spencer, The probabilistic method, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., Wiley-Interscience [John Wiley Sons], New York, 2000, xviii+301 pp. | DOI | MR | Zbl
[10] A. M. Raigorodskii and D. D. Cherkashin, Russian Math. Surveys, 75:1 (2020), 89–146 | DOI | MR | Zbl
[11] P. Erdös and J. Spencer, Networks, 1:4 (1971/72), 379–385 | DOI | MR | Zbl
[12] J. Balogh, D. Cherkashin, and S. Kiselev, European J. Combin., 79 (2019), 228–236 | DOI | MR | Zbl