Mots-clés : distributions, Poincaré–Helmholtz action
@article{RM_2024_79_4_a2,
author = {V. V. Kozlov},
title = {On {Dirac's} generalized {Hamiltonian} dynamics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {649--681},
year = {2024},
volume = {79},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_4_a2/}
}
V. V. Kozlov. On Dirac's generalized Hamiltonian dynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 4, pp. 649-681. http://geodesic.mathdoc.fr/item/RM_2024_79_4_a2/
[1] P. A. M. Dirac, “Generalized Hamiltonian dynamics”, Canad. J. Math., 2:2 (1950), 129–148 | DOI | MR | Zbl
[2] P. A. M. Dirac, “Generalized Hamiltonian dynamics”, Proc. Roy. Soc. London Ser. A, 246 (1958), 326–332 | DOI | MR | Zbl
[3] J. L. Anderson and P. G. Bergmann, “Constraints in covariant field theories”, Phys. Rev. (2), 83:5 (1951), 1018–1025 | DOI | MR | Zbl
[4] B. V. Medvedev, “P. A. M. Dirac and the logical foundations of quantum theory. II”: P. A. M. Dirac, Collected works, v. III, Fizmatlit, Moscow, 2004, 649–650 (Russian)
[5] V. V. Kozlov, General theory of vortices, 2nd revised and augmented ed., Institute for Computer Studies, Moscow–Izhevsk, 2013, 324 СЃ. ; English transl. of 1st ed. Dynamical systems X. General theory of vortices, Encyclopaedia Math. Sci., 67, Springer-Verlag, Berlin, 2003, viii+184 pp. | MR | Zbl | DOI | MR | Zbl
[6] L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia–London–Toronto, ON, 1969, xi+331 pp. | MR | Zbl
[7] A. J. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian systems, Accad. Naz. Lincei, Rome, 1976, 135 pp.
[8] V. V. Nesterenko and A. M. Chervyakov, “Some properties of constraints in theories with degenerate Lagrangians”, Theoret. and Math. Phys., 64:1 (1985), 701–707 | DOI | MR | Zbl
[9] L. Faddeev and R. Jackiw, “Hamiltonian reduction of unconstrained and constrained systems”, Phys. Rev. Lett., 60:17 (1988), 1692–1694 | DOI | MR | Zbl
[10] B. M. Barbashov, “Hamiltonian formalism for Lagrangian systems with prescribed constraints”, Fiz. Elementarnykh Chastits i Atom. Yadra, 34:1 (2003), 5–42 (Russian)
[11] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl
[12] E. Newman and P. G. Bergmann, “Lagrangians linear in the “velocities””, Phys. Rev. (2), 99:2 (1955), 587–592 | DOI | MR | Zbl
[13] F. A. Berezin, “Hemiltonian formalizm in the general Lagrange problem”, Uspekhi Mat. Nauk, 29:3(177) (1974), 183–184 (Russian) | MR | Zbl
[14] V. I. Arnold, V. V. Kozlov, and A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[15] M. V. Deryabin, “The Dirac Hamiltonian formalism and the realization of constraints by small masses”, J. Appl. Math. Mech., 64:1 (2000), 35–39 | DOI | MR | Zbl
[16] D. R. Merkin, Giroscopic systems, 2nd ed., Nauka, Moscow, 1974, 344 pp. (Russian) | Zbl
[17] V. V. Strygin and V. A. Sobolev, Separation of motions by the method of integral manifolds, Nauka, Moscow, 1988, 256 pp. (Russian) | MR | Zbl
[18] A. Yu. Ishlinskii, Mechanics of gyroscolic systems, 2nd ed., USSR Academy of Sciences publishing house, Moscow, 1963, 482 pp. (Russian) | Zbl
[19] V. V. Kozlov, “The dynamics of systems with large gyroscopic forces and the realization of constraints”, J. Appl. Math. Mech., 78:3 (2014), 213–219 | DOI | MR | Zbl
[20] A. V. Vlakhova, “Nonholonomic motions of gyroscopic and wheeled systems”, Moscow Univ. Mech. Bull., 68:5 (2013), 126–132 | DOI | Zbl
[21] A. V. Vlakhova, “The dynamics of systems with rolling and gyroscopic systems with small generalized velocities and the realization of constraints”, J. Appl. Math. Mech., 78:6 (2014), 568–579 | DOI | MR | Zbl
[22] E. Cartan, Leçons sur les invariants intégraux, Hermann, Paris, 1922, x+210 pp. | MR | Zbl
[23] A. F. Filippov, “Differential equations with discontinnuous right-hand side”, Amer. Math. Soc. Transl. Ser. 2, 42, Amer. Math. Soc., Providence, RI, 1964, 199–231 | DOI | MR | Zbl
[24] V. I. Utkin, Sliding modes and their application in variable structure systems, Mir, Moscow, 1978, 257 pp. | Zbl
[25] P. Appell, Traité de mécanique rationnelle, v. I, 5-e éd., Gauthier-Villars, Paris, 1926, 619 pp. ; v. II, 6-e éd., 1953, 575 pp. | Zbl
[26] V. V. Kozlov, “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic. Dyn., 7:2 (2002), 161–176 | DOI | MR | Zbl
[27] V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics”, Russian Math. Surveys, 75:3 (2020), 445–494 | DOI | MR | Zbl
[28] G. A. Bliss, Lectures on the calculus of variations, Univ. of Chicago Press, Chicago, IL, 1946, ix+296 pp. | MR | Zbl
[29] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. I”, Moscow Univ. Mech. Bull., 37:3-4 (1982), 27–34 ; II, 37:3-4 (1982), 74–80 ; III, 38:3 (1983), 40–51 ; IV. Integral principles, 42:5 (1987), 40–49 ; V. Freedom principle and ideal constraints condition, 43:6 (1988), 23–29 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl
[30] R. S. Strichartz, “Sub-Riemannian geometry”, J. Differential Geom., 24:2 (1986), 221–263 | DOI | MR | Zbl
[31] P. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp. | DOI | MR | Zbl
[32] A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81 | DOI | MR | MR | Zbl
[33] A. A. Agrachev, “Topics in sub-Riemannian geometry”, Russian Math. Surveys, 71:6 (2016), 989–1019 | DOI | MR | Zbl
[34] H. Hertz, Die Principien der Mechanik in neuem Zusammenhange dargestellt, Gesammelte Werke, III, J. A. Barth, Leipzig, 1894, xxix+312 pp. | Zbl