Cohomology of Hopf algebras and Massey products
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 4, pp. 567-648

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of the trigraded Buchstaber spectral sequence $\operatorname{Bss}$ for graded Hopf algebras is developed. It is shown that the differentials of $\operatorname{Bss}$ define an increasing exhaustive filtration as a new structure in the cohomology of Hopf algebras. This structure is described explicitly for a number of known Hopf algebras. For the tensor algebra $T(s \operatorname{Ext}^{1,*}_{A}(\Bbbk,\Bbbk))$ of the suspension of the one-dimensional cohomology of a Hopf algebra $A$ over a field $\Bbbk$, the construction of partial multivalued operations $\operatorname{Bss}_p$, $p\geqslant 1$, is presented. This construction is used to describe the differentials in the spectral sequence $\operatorname{Bss}$ and the exhaustive filtration in $\operatorname{Ext}_{A}^{*,*}(\Bbbk,\Bbbk)$. It is shown that the structure introduced is an effective tool for solving several well-known problems: (1) realising cohomology classes of Hopf algebras by Massey products; (2) interpreting differentials in $\operatorname{Bss}$ as Massey operations; (3) effective construction of a certain class of Massey products in the form of differentials in $\operatorname{Bss}$. Bibliography: 74 titles.
Keywords: Hopf algebras, Landweber–Novikov algebra, Buchstaber spectral sequence, Eilenberg–Moore spectral sequence, $\operatorname{Bss}$-operations, cohomology of nilmanifolds.
@article{RM_2024_79_4_a1,
     author = {V. M. Buchstaber and F. Yu. Popelenskii},
     title = {Cohomology of {Hopf} algebras and {Massey} products},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {567--648},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_4_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - F. Yu. Popelenskii
TI  - Cohomology of Hopf algebras and Massey products
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 567
EP  - 648
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_4_a1/
LA  - en
ID  - RM_2024_79_4_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A F. Yu. Popelenskii
%T Cohomology of Hopf algebras and Massey products
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 567-648
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2024_79_4_a1/
%G en
%F RM_2024_79_4_a1
V. M. Buchstaber; F. Yu. Popelenskii. Cohomology of Hopf algebras and Massey products. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 4, pp. 567-648. http://geodesic.mathdoc.fr/item/RM_2024_79_4_a1/