Cohomology of Hopf algebras and Massey products
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 4, pp. 567-648
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The theory of the trigraded Buchstaber spectral sequence $\operatorname{Bss}$ for graded Hopf algebras is developed. It is shown that the differentials of $\operatorname{Bss}$ define an increasing exhaustive filtration as a new structure in the cohomology of Hopf algebras. This structure is described explicitly for a number of known Hopf algebras.
For the tensor algebra $T(s \operatorname{Ext}^{1,*}_{A}(\Bbbk,\Bbbk))$ of the suspension of the one-dimensional cohomology of a Hopf algebra $A$ over a field $\Bbbk$, the construction of partial multivalued operations $\operatorname{Bss}_p$, $p\geqslant 1$, is presented. This construction is used to describe the differentials in the spectral sequence $\operatorname{Bss}$ and the exhaustive filtration in
$\operatorname{Ext}_{A}^{*,*}(\Bbbk,\Bbbk)$.
It is shown that the structure introduced is an effective tool for solving several well-known problems:
(1) realising cohomology classes of Hopf algebras by Massey products;
(2) interpreting differentials in $\operatorname{Bss}$ as Massey operations;
(3) effective construction of a certain class of Massey products in the form of differentials in $\operatorname{Bss}$.
Bibliography: 74 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hopf algebras, Landweber–Novikov algebra, Buchstaber spectral sequence, Eilenberg–Moore spectral sequence, $\operatorname{Bss}$-operations, cohomology of nilmanifolds.
                    
                    
                    
                  
                
                
                @article{RM_2024_79_4_a1,
     author = {V. M. Buchstaber and F. Yu. Popelenskii},
     title = {Cohomology of {Hopf} algebras and {Massey} products},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {567--648},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_4_a1/}
}
                      
                      
                    TY - JOUR AU - V. M. Buchstaber AU - F. Yu. Popelenskii TI - Cohomology of Hopf algebras and Massey products JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 567 EP - 648 VL - 79 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2024_79_4_a1/ LA - en ID - RM_2024_79_4_a1 ER -
V. M. Buchstaber; F. Yu. Popelenskii. Cohomology of Hopf algebras and Massey products. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 4, pp. 567-648. http://geodesic.mathdoc.fr/item/RM_2024_79_4_a1/
