On the adjacency of type $D$ singularities of a front
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 550-552
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2024_79_3_a4,
author = {V. D. Sedykh},
title = {On the adjacency of type $D$ singularities of a front},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {550--552},
year = {2024},
volume = {79},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_3_a4/}
}
V. D. Sedykh. On the adjacency of type $D$ singularities of a front. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 550-552. http://geodesic.mathdoc.fr/item/RM_2024_79_3_a4/
[1] V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp. | DOI | MR | Zbl
[2] E. Looijenga, Compositio Math., 37:1 (1978), 51–62 | MR | Zbl
[3] V. D. Sedykh, Izv. Math., 76:2 (2012), 375–418 | DOI | MR | Zbl
[4] V. D. Sedykh, Arnold Math. J., 7:2 (2021), 195–212 | DOI | MR | Zbl
[5] V. D. Sedykh, Mathematical methods of catastrophe theory, Moscow Center of Continuous Mathematical Education, Moscow, 2021, 224 pp. (Russian)
[6] V. A. Vassiliev, Complements of discriminants of simple real function singularities, 2022 (v1 – 2021), 22 pp., arXiv: (to appear in Israel J. Math.) 2109.12287