@article{RM_2024_79_3_a3,
author = {S. P. Suetin},
title = {Maximum principle and asymptotic~properties of {Hermite{\textendash}Pad\'e} polynomials},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {547--549},
year = {2024},
volume = {79},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_3_a3/}
}
S. P. Suetin. Maximum principle and asymptotic properties of Hermite–Padé polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 547-549. http://geodesic.mathdoc.fr/item/RM_2024_79_3_a3/
[1] E. O. Dobrolyubov, I. V. Polyakov, D. V. Millionshchikov, and S. V. Krasnoshchekov, J. Quant. Spectrosc. Radiat. Transf., 316 (2024), 108909, 13 pp. | DOI
[2] A. A. Gonchar and E. A. Rakhmanov, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl
[3] A. Katz, Nuclear Phys., 29 (1962), 353–372 | DOI | MR
[4] A. V. Komlov, “The polynomial Hermite–Padé $m$-system for meromorphic functions on a compact Riemann surface”, Sb. Math., 212:12 (2021), 1694–1729 | DOI | MR | Zbl
[5] A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, Russian Math. Surveys, 72:4 (2017), 671–706 | DOI | MR | Zbl
[6] E. M. Nikishin, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl
[7] J. Nuttall, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[8] E. A. Rakhmanov and S. P. Suetin, Sb. Math., 204:9 (2013), 1347–1390 | DOI | MR | Zbl
[9] S. P. Suetin, Sb. Math., 213:11 (2022), 1582–1596 | DOI | MR | Zbl
[10] S. P. Suetin, Russian Math. Surveys, 78:5 (2023), 967–969 | DOI | MR | Zbl