@article{RM_2024_79_3_a2,
author = {I. V. Limonova and Yu. V. Malykhin and V. N. Temlyakov},
title = {One-sided discretization inequalities and sampling recovery},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {515--545},
year = {2024},
volume = {79},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_3_a2/}
}
TY - JOUR AU - I. V. Limonova AU - Yu. V. Malykhin AU - V. N. Temlyakov TI - One-sided discretization inequalities and sampling recovery JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 515 EP - 545 VL - 79 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2024_79_3_a2/ LA - en ID - RM_2024_79_3_a2 ER -
%0 Journal Article %A I. V. Limonova %A Yu. V. Malykhin %A V. N. Temlyakov %T One-sided discretization inequalities and sampling recovery %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 515-545 %V 79 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2024_79_3_a2/ %G en %F RM_2024_79_3_a2
I. V. Limonova; Yu. V. Malykhin; V. N. Temlyakov. One-sided discretization inequalities and sampling recovery. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 515-545. http://geodesic.mathdoc.fr/item/RM_2024_79_3_a2/
[1] F. Bartel, M. Schäfer, and T. Ullrich, “Constructive subsampling of finite frames with applications in optimal function recovery”, Appl. Comput. Harmon. Anal., 65 (2023), 209–248 | DOI | MR | Zbl
[2] J. Bourgain and M. Lewko, “Sidonicity and variants of Kaczmarz's problem”, Ann. Inst. Fourier (Grenoble), 67:3 (2017), 1321–1352 | DOI | MR | Zbl
[3] M. Dolbeault and A. Cohen, “Optimal pointwise sampling for $L^2$ approximation”, J. Complexity, 68 (2022), 101602, 12 pp. | DOI | MR | Zbl
[4] A. Cohen and G. Migliorati, “Optimal weighted least-squares methods”, SMAI J. Comput. Math., 3 (2017), 181–203 | DOI | MR | Zbl
[5] F. Dai, E. Kosov, and V. Temlyakov, “Some improved bounds in sampling discretization of integral norms”, J. Funct. Anal., 285:4 (2023), 109951, 40 pp. ; (2022 (v2 – 2023)), 46 pp., arXiv: 2208.09762v1 | DOI | MR | Zbl
[6] F. Dai, A. Prymak, A. Shadrin, V. Temlyakov, and S. Tikhonov, “Entropy numbers and Marcinkiewicz-type discretization”, J. Funct. Anal., 281:6 (2021), 109090, 25 pp. ; Entropy numbers and Marcinkiewicz-type discretization theorem, 2020, 27 pp., arXiv: 2001.10636v1 | DOI | MR | Zbl
[7] F. Dai, A. Prymak, V. N. Temlyakov, and S. Yu. Tikhonov, “Integral norm discretization and related problems”, Russian Math. Surveys, 74:4 (2019), 579–630 ; (2018 (v3 – 2019)), 51 pp., arXiv: 1807.01353v1 | DOI | MR | Zbl
[8] F. Dai and V. N. Temlyakov, “Sampling discretization of integral norms and its application”, Proc. Steklov Inst. Math., 319 (2022), 97–109 | DOI | MR | Zbl
[9] F. Dai and V. Temlyakov, Universal discretization and sparse sampling recovery, 2023, 40 pp., arXiv: 2301.05962
[10] F. Dai and V. Temlyakov, Lebesgue-type inequalities in sparse sampling recovery, 2023, 25 pp., arXiv: 2307.04161v1
[11] F. Dai and V. Temlyakov, “Random points are good for universal discretization”, J. Math. Anal. Appl., 529:1 (2024), 127570, 28 pp. ; (2023), 35 pp., arXiv: 2301.12536v2 | DOI | MR | Zbl
[12] Dinh Düng, “Reconstruction and one-sided approximation of periodic functions of several variables”, Soviet Math. Dokl., 42:1 (1991), 68–71 | MR | Zbl
[13] Dinh Dũng, V. Temlyakov, and T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp. ; 2016 (v3 – 2017), 182 pp., arXiv: 1601.03978v2 | DOI | MR | Zbl
[14] M. Dolbeault, D. Krieg, and M. Ullrich, “A sharp upper bound for sampling numbers in $L_2$”, Appl. Comput. Harmon. Anal., 63 (2023), 113–134 | DOI | MR | Zbl
[15] D. Freeman and D. Ghoreishi, “Discretizing $L_p$ norms and frame theory”, J. Math. Anal. Appl., 519:2 (2023), 126846, 17 pp. | DOI | MR | Zbl
[16] E. D. Gluskin, “Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces”, Math. USSR-Sb., 64:1 (1989), 85–96 | DOI | MR | Zbl
[17] T. Jahn, T. Ullrich, and F. Voigtlaender, “Sampling numbers of smoothness classes via $\ell^1$-minimization”, J. Complexity, 79 (2023), 101786, 35 pp. ; (2022 (v3 – 2023)), 26 pp., arXiv: 2212.00445v1 | DOI | MR | Zbl
[18] L. Kämmerer, T. Ullrich, and T. Volkmer, “Worst-case recovery guarantees for least squares approximation using random samples”, Constr. Approx., 54:2 (2021), 295–352 | DOI | MR | Zbl
[19] B. Kashin, S. Konyagin, and V. Temlyakov, “Sampling discretization of the uniform norm”, Constr. Approx., 57:2 (2023), 663–694 | DOI | MR | Zbl
[20] B. Kashin, E. Kosov, I. Limonova, and V. Temlyakov, “Sampling discretization and related problems”, J. Complexity, 71 (2022), 101653, 55 pp. | DOI | MR | Zbl
[21] B. S. Kashin and V. N. Temlyakov, “The volume estimates and their applications”, East J. Approx., 9:4 (2003), 469–485 | MR | Zbl
[22] J. Kiefer and J. Wolfowitz, “The equivalence of two extremum problems”, Canadian J. Math., 12 (1960), 363–366 | DOI | MR | Zbl
[23] E. Kosov and V. Temlyakov, “Sampling discretization of the uniform norm and applications”, J. Math. Anal. Appl., 538:2 (2024), 128431, 25 pp. ; (2024 (v1 – 2023)), 36 pp., arXiv: 2306.14207 | DOI | MR
[24] E. D. Kosov and V. N. Temlyakov, Bounds for the sampling discretization error and their applications to universal sampling discretization, 2024 (v1 – 2023), 36 pp., arXiv: 2312.05670v2
[25] D. Krieg, K. Pozharska, M. Ullrich, and T. Ullrich, Sampling recovery in $L_2$ and other norms, 2023, 32 pp., arXiv: 2305.07539v3
[26] D. Krieg, K. Pozharska, M. Ullrich, and T. Ullrich, Sampling projections in the uniform norm, 2024, 18 pp., arXiv: 2401.02220
[27] D. Krieg and M. Ullrich, “Function values are enough for $L_2$-approximation”, Found. Comput. Math., 21:4 (2021), 1141–1151 | DOI | MR | Zbl
[28] D. Krieg and M. Ullrich, “Function values are enough for $L_2$-approximation: Part II”, J. Complexity, 66 (2021), 101569, 14 pp. | DOI | MR | Zbl
[29] I. V. Limonova, “Exact discretization of the $L_2$-norm with negative weight”, Math. Notes, 110:3 (2021), 458–462 | DOI | MR | Zbl
[30] I. Limonova and V. Temlyakov, “On sampling discretization in $L_2$”, J. Math. Anal. Appl., 515:2 (2022), 126457, 14 pp. | DOI | MR | Zbl
[31] D. S. Lubinsky, “Marcinkiewicz–Zygmund inequalities: methods and results”, Recent progress in inequalities, Math. Appl., 430, Kluwer Acad. Publ., Dordrecht, 1998, 213–240 | DOI | MR | Zbl
[32] A. A. Lunin, “Operator norms of submatrices”, Math. Notes, 45:3 (1989), 248–252 | DOI | MR | Zbl
[33] A. W. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing families II: Mixed characteristic polynomials and the Kadison–Singer problem”, Ann. of Math. (2), 182:1 (2015), 327–350 | DOI | MR | Zbl
[34] N. Nagel, M. Schäfer, and T. Ullrich, “A new upper bound for sampling numbers”, Found. Comput. Math., 22:2 (2022), 445–468 | DOI | MR | Zbl
[35] E. Novak, Deterministic and stochastic error bounds in numerical analysis, Lecture Notes in Math., 1349, Springer-Verlag, Berlin, 1988, vi+113 pp. | DOI | MR | Zbl
[36] E. Novak and H. Woźniakowski, Tractability of multivariate problems, v. I, EMS Tracts Math., 6, Linear information, Eur. Math. Soc. (EMS), Zürich, 2008, xii+384 pp. | DOI | MR | Zbl
[37] E. Novak and H. Woźniakowski, Tractability of multivariate problems, v. II, EMS Tracts Math., 12, Standard information for functionals, Eur. Math. Soc. (EMS), Zürich, 2010, xviii+657 pp. | DOI | MR | Zbl
[38] E. Novak and H. Woźniakowski, Tractability of multivariate problems, v. III, EMS Tracts Math., 18, Standard information for operators, Eur. Math. Soc. (EMS), Zürich, 2012, xviii+586 pp. | DOI | MR | Zbl
[39] G. Pisier, “On uniformly bounded orthonormal Sidon systems”, Math. Res. Lett., 24:3 (2017), 893–932 | DOI | MR | Zbl
[40] K. Pozharska and T. Ullrich, “A note on sampling recovery of multivariate functions in the uniform norm”, SIAM J. Numer. Anal., 60:3 (2022), 1363–1384 | DOI | MR | Zbl
[41] V. N. Temlyakov, “On approximate recovery of functions with bounded mixed derivative”, J. Complexity, 9:1 (1993), 41–59 | DOI | MR | Zbl
[42] V. N. Temlyakov, “The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials”, Jaen J. Approx., 9:1 (2017), 37–63 | MR | Zbl
[43] V. N. Temlyakov, “The Marcinkiewicz-type discretization theorems”, Constr. Approx., 48:2 (2018), 337–369 | DOI | MR | Zbl
[44] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp. | DOI | MR | Zbl
[45] V. Temlyakov, “On optimal recovery in $L_2$”, J. Complexity, 65 (2021), 101545, 11 pp. | DOI | MR | Zbl
[46] V. N. Temlyakov, “On universal sampling recovery in the uniform norm”, Proc. Steklov Inst. Math., 323 (2023), 206–216 | DOI | MR | Zbl
[47] V. Temlyakov, Sparse sampling recovery in integral norms on some function classes, 2024, 25 pp., arXiv: 2401.14670
[48] V. Temlyakov and T. Ullrich, “Bounds on Kolmogorov widths and sampling recovery for classes with small mixed smoothness”, J. Complexity, 67 (2021), 101575, 19 pp. | DOI | MR | Zbl
[49] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-based complexity, Comput. Sci. Sci. Comput., Academic Press, Inc., Boston, MA, 1988, xiv+523 pp. | MR | Zbl
[50] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | Zbl