Boltzmann-type kinetic equations and discrete models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 459-513 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The known non-linear kinetic equations (in particular, the wave kinetic equation and the quantum Nordheim–Uehling–Uhlenbeck equations) are considered as a natural generalization of the classical spatially homogeneous Boltzmann equation. To this end we introduce the general Boltzmann-type kinetic equation that depends on a function of four real variables $F(x,y;v,w)$. The function $F$ is assumed to satisfy certain commutation relations. The general properties of this equation are studied. It is shown that the kinetic equations mentioned above correspond to different forms of the function (polynomial) $F$. Then the problem of discretization of the general Boltzmann-type kinetic equation is considered on the basis of ideas which are similar to those used for the construction of discrete models of the Boltzmann equation. The main attention is paid to discrete models of the wave kinetic equation. It is shown that such models have a monotone functional similar to the Boltzmann $H$-function. The existence and uniqueness theorem for global in time solution of the Cauchy problem for these models is proved. Moreover, it is proved that the solution converges to the equilibrium solution when time goes to infinity. The properties of the equilibrium solution and the connection with solutions of the wave kinetic equation are discussed. The problem of the approximation of the Boltzmann-type equation by its discrete models is also discussed. The paper contains a concise introduction to the Boltzmann equation and its main properties. In principle, it allows one to read the paper without any preliminary knowledge in kinetic theory. Bibliography: 61 titles.
Keywords: Boltzmann-type equations, wave kinetic equation, Lyapunov functions, $H$-theorem, distribution functions, discrete kinetic models, non-linear integral operators, dynamical systems.
@article{RM_2024_79_3_a1,
     author = {A. V. Bobylev},
     title = {Boltzmann-type kinetic equations and discrete models},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {459--513},
     year = {2024},
     volume = {79},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_3_a1/}
}
TY  - JOUR
AU  - A. V. Bobylev
TI  - Boltzmann-type kinetic equations and discrete models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 459
EP  - 513
VL  - 79
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_3_a1/
LA  - en
ID  - RM_2024_79_3_a1
ER  - 
%0 Journal Article
%A A. V. Bobylev
%T Boltzmann-type kinetic equations and discrete models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 459-513
%V 79
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2024_79_3_a1/
%G en
%F RM_2024_79_3_a1
A. V. Bobylev. Boltzmann-type kinetic equations and discrete models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 459-513. http://geodesic.mathdoc.fr/item/RM_2024_79_3_a1/

[1] R. Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, and Tong Yang, “Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff”, Kyoto J. Math., 52:3 (2012), 433–463 | DOI | MR | Zbl

[2] L. Arkeryd, “On the Boltzmann equation. I. Existence”, Arch. Ration. Mech. Anal., 45 (1972), 1–16 ; “II. The full initial value problem”, 17–34 | DOI | MR | Zbl | DOI | MR | Zbl

[3] L. Arkeryd, “$L^\infty$ estimates for the space-homogeneous Boltzmann equation”, J. Stat. Phys., 31:2 (1983), 347–361 | DOI | MR | Zbl

[4] L. Arkeryd, “A quantum Boltzmann equation for Haldane statistics and hard forces; the space-homogeneous initial value problem”, Comm. Math. Phys., 298:2 (2010), 573–583 | DOI | MR | Zbl

[5] L. Arkeryd, “On low temperature kinetic theory: spin diffusion, Bose–Einstein condensates, anyons”, J. Stat. Phys., 150:6 (2013), 1063–1079 | DOI | MR | Zbl

[6] L. Arkeryd and A. Nouri, “Bose condensates in interaction with excitations: a kinetic model”, Comm. Math. Phys., 310:3 (2012), 765–788 | DOI | MR | Zbl

[7] L. Arkeryd and A. Nouri, “A Milne problem from a Bose condensate with excitations”, Kinet. Relat. Models, 6:4 (2013), 671–686 | DOI | MR | Zbl

[8] A. A. Arsen'ev, “The Cauchy problem for the linearized Boltzmann equation”, U.S.S.R. Comput. Math. Math. Phys., 5:5 (1975), 110–136 | DOI | MR | Zbl

[9] R. Balescu, Statistical mechanics of charged particles, Monographs in Statistical Physics and Thermodynamics, 4, Intersci. Publ. John Wiley Sons, Ltd., London–New York–Sydney, 1963, xii+477 pp. | MR | Zbl

[10] A. V. Bobylev, Kinetic equations, v. 1, De Gruyter Ser. Appl. Numer. Math., 5/1, Boltzmann equation, Maxwell models, and hydrodynamics beyond Navier–Stokes, De Gruyter, Berlin, 2020, xiii+244 pp. | DOI | Zbl

[11] A. V. Bobylev and C. Cercignani, “Discrete velocity models without nonphysical invariants”, J. Stat. Phys., 97:3-4 (1999), 677–686 | DOI | MR | Zbl

[12] A. V. Bobylev and S. B. Kuksin, “Boltzmann equation В nd wave kinetic equations”, Keldysh Institute Preprints, 2023, 031, 20 pp. (Russian) | DOI

[13] A. V. Bobylev, A. Palczewski, and J. Schneider, “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci. Paris Sér. I Math., 320:5 (1995), 639–644 | MR | Zbl

[14] A. V. Bobylev and M. C. Vinerean, “Construction of discrete kinetic models with given invariants”, J. Stat. Phys., 132:1 (2008), 153–170 | DOI | MR | Zbl

[15] N. N. Bogoliubov, “Problems of a dynamical theory in statistical physics”, Studies of statistical mechanics, v. I, Series in Physics, North-Holland Publishing Co., Amsterdam, 1962, 1–118 | MR | Zbl

[16] L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen”, Wien. Ber., 66 (1872), 275–370 | Zbl

[17] J. E. Broadwell, “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414 | DOI | MR | Zbl

[18] H. Cabannes, The discrete Boltzmann equation (theory and applications), Lecture notes given at the University of California, Univ. of California, Berkeley, 1980, viii+55 pp.

[19] T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Publ. Sci. Inst. Mittag-Leffler, 2, Almqvist Wiksells, Uppsala, 1957, 112 pp. | MR | Zbl

[20] C. Cercignani, The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New York, 1988, xii+455 pp. | DOI | MR | Zbl

[21] C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute gases, Appl. Math. Sci., 106, Springer-Verlag, New York, 1994, viii+347 pp. | DOI | MR | Zbl

[22] S. Chapman, “On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas”, Philos. Trans. Roy. Soc. London Ser. A, 216:538-548 (1916), 279–348 | DOI

[23] R. J. DiPerna and P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 312–366 | DOI | MR | Zbl

[24] W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 92:1 (1988), 73–90 | DOI | MR | Zbl

[25] A. Dymov and S. Kuksin, “Formal expansions in stochastic model for wave turbulence 1: kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014 | DOI | MR | Zbl

[26] R. S. Ellis and M. A. Pinsky, “The first and second fluid approximations to the linearized Boltzmann equation”, J. Math. Pures Appl. (9), 54 (1975), 125–156 | MR | Zbl

[27] D. Enskog, Kinetische Theorie der Vorgänge in mässig verdünnten Gasen, Almqvist Wiksells, Uppsala, 1917, vi+160 pp. | Zbl

[28] M. Escobedo and J. J. L. Velázquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238, no. 1124, Amer. Math. Soc., Providence, RI, 2015, v+107 pp. | DOI | MR | Zbl

[29] L. Fainsilberg, P. Kurlberg, and B. Wennberg, “Lattice points on circles and discrete velocity models for the Boltzmann equation”, SIAM J. Math. Anal., 37:6 (2006), 1903–1922 | DOI | MR | Zbl

[30] A. A. Galeev and V. I. Karpman, “Turbulence theory of a weakly non-equilibrium low-density plasma and structure of shock waves”, Soviet Physics JETP, 17:2 (1963), 403–409

[31] R. Gatignol, Théorie cinétique des gaz à répartition discrète de vitesses, Lecture Notes in Phys., 36, Springer-Verlag, Berlin–New York, 1975, ii+219 pp. | DOI | MR

[32] D. Goldstein, B. Sturtevant, and J. E. Broadwell, “Investigations of the motion of discrete-velocity gases”, Rared gas dynamics: theoretical and computational techniques, Progr. Astronaut. Aeronaut., 118, AIAA, Washington, DC, 1989, 100–117 | DOI

[33] E. P. Golubeva and O. M. Fomenko, “Asymptotic distribution of integral points on the three-dimensional sphere”, J. Soviet Math., 52:3 (1990), 3036–3048 | DOI | MR | Zbl

[34] H. Grad, “Principles of the kinetic theory of gases”, Thermodynamik der Gase, Handbuch Phys., 12, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, 205–294 | DOI | MR

[35] E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York, 1985, xi+251 pp. | DOI | MR | Zbl

[36] D. Hilbert, “Begründung der kinetischen Gastheorie”, Math. Anal., 72:4 (1912), 562–577 | DOI | MR | Zbl

[37] R. Illner and T. Platkowski, “Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory”, SIAM Rev., 30:2 (1988), 213–255 | DOI | MR | Zbl

[38] H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87:2 (1987), 385–401 | DOI | MR | Zbl

[39] M. Kac, Probability and related topics in physical sciences (Boulder, CO 1957), Lectures in Appl. Math., Intersci. Publ., London–New York, 1959, xiii+266 pp. | MR | Zbl

[40] L. D. Landau, “Kinetic equation for the case of Coulomb interaction”, Phys. Z. Sowjetunion, 10 (1936), 154–164 | Zbl

[41] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 1, Pergamon Internat. Library Sci. Tech. Engrg. Social Stud., Mechanics, 3rd ed., Pergamon Press, Oxford–Elmsford, NY, 1981, xxvii+169 pp. | MR

[42] O. E. Lanford III, “Time evolution of large classical systems”, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, WA 1974), Lecture Notes in Phys., 38, Springer-Verlag, Berlin–New York, 1975, 1–111 | DOI | MR | Zbl

[43] E. M. Lifshitz and L. P. Pitaevskii, Course of theoretical physics, v. 10, Pergamon Internat. Library Sci. Tech. Engrg. Social Stud., Physical kinetics, Pergamon Press, Oxford–Elmsford, NY, 1981, xi+452 pp. | MR

[44] Yu. V. Linnik, Ergodic properties of algebraic fields, Ergeb. Math. Grenzgeb., 45, Springer-Verlag New York Inc., New York, 1968, ix+192 pp. | MR | Zbl

[45] A. M. Lyapunov, The general problem of the stability of motion, Taylor Francis Group, London, 1992, x+270 pp. | MR | Zbl

[46] N. B. Maslova and A. N. Firsov, “Solution of the Cauchy problem for the Bolzmann equation. I”, Vestn. Leningrad Univ., 1975, no. 19, 83–88 (Russian) | MR | Zbl

[47] J. C. Maxwell, “On the dynamical theory of gases”, Philos. Trans. Roy. Soc. London, 157 (1867), 49–88 | DOI

[48] D. Morgenstern, “General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell–Boltzmann equation in the case of Maxwellian molecules”, Proc. Natl. Acad. Sci. U.S.A., 40:8 (1954), 719–721 | DOI | MR | Zbl

[49] L. W. Nordheim, “On the kinetic method in the new statistics and application in the electron theory of conductivity”, Proc. Roy. Soc. London Ser. A, 119:783 (1928), 689–698 | DOI | Zbl

[50] A. Palczewski, J. Schneider, and A. V. Bobylev, “A consistency result for a discrete-velocity model of the Boltzmann equation”, SIAM J. Numer. Anal., 34:5 (1997), 1865–1883 | DOI | MR | Zbl

[51] V. A. Panferov and A. G. Heintz, “A new consistent discrete-velocity model for the Boltzmann equation”, Math. Methods Appl. Sci., 25:7 (2002), 571–593 | DOI | MR | Zbl

[52] P. Sarnak, Some applications of modular forms, Cambridge Tracts in Math., 99, Cambridge Univ. Press, Cambridge, 1990, x+111 pp. | DOI | MR | Zbl

[53] A. N. Tikhonov, A. B. Vasil'eva, and A. G. Sveshnikov, Differential equations, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, viii+238 pp. | MR | Zbl

[54] E. A. Uehling and G. E. Uhlenbeck, “Transport phenomena in Einstein–Bose and Fermi–Dirac gases. I”, Phys. Rev. (2), 43:7 (1933), 552–561 | DOI | Zbl

[55] S. Ukai, “On the existence of global solutions of mixed problem for non-linear Boltzmann equation”, Proc. Japan Acad., 50:3 (1974), 179–184 | DOI | MR | Zbl

[56] V. V. Vedenyapin, “Velocity inductive construction for mixtures”, Transport Theory Statist. Phys., 28:7 (1999), 727–742 | DOI | Zbl

[57] V. V. Vedenyapin and Yu. N. Orlov, “Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation”, Theoret. and Math. Phys., 121:2 (1999), 1516–1523 | DOI | MR | Zbl

[58] C. Villani, “A review of mathematical topics in collisional kinetic theory”, Handbook of mathematical fluid dynamics, v. 1, Noth-Holland, Amsterdam, 2002, 71–305 | DOI | MR | Zbl

[59] A. A. Vlasov, “Vibration properties of an electron gas”, Zh. Experiment. Teor. Fiz., 8:3 (1938), 291–318 (Russian) | Zbl

[60] V. E. Zakharov, “A solvable model of weak turbulence”, Prikl. Mech. Tech. Fiz. (USSR), 1965, no. 1, 14–20 (Russian)

[61] E. Zermelo, “Ueber einen Satz der Dynamik und die mechanische Wärmetheorie”, Ann. Phys., 293:3 (1896), 485–494 | DOI | Zbl