@article{RM_2024_79_3_a1,
author = {A. V. Bobylev},
title = {Boltzmann-type kinetic equations and discrete models},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {459--513},
year = {2024},
volume = {79},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_3_a1/}
}
A. V. Bobylev. Boltzmann-type kinetic equations and discrete models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 459-513. http://geodesic.mathdoc.fr/item/RM_2024_79_3_a1/
[1] R. Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, and Tong Yang, “Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff”, Kyoto J. Math., 52:3 (2012), 433–463 | DOI | MR | Zbl
[2] L. Arkeryd, “On the Boltzmann equation. I. Existence”, Arch. Ration. Mech. Anal., 45 (1972), 1–16 ; “II. The full initial value problem”, 17–34 | DOI | MR | Zbl | DOI | MR | Zbl
[3] L. Arkeryd, “$L^\infty$ estimates for the space-homogeneous Boltzmann equation”, J. Stat. Phys., 31:2 (1983), 347–361 | DOI | MR | Zbl
[4] L. Arkeryd, “A quantum Boltzmann equation for Haldane statistics and hard forces; the space-homogeneous initial value problem”, Comm. Math. Phys., 298:2 (2010), 573–583 | DOI | MR | Zbl
[5] L. Arkeryd, “On low temperature kinetic theory: spin diffusion, Bose–Einstein condensates, anyons”, J. Stat. Phys., 150:6 (2013), 1063–1079 | DOI | MR | Zbl
[6] L. Arkeryd and A. Nouri, “Bose condensates in interaction with excitations: a kinetic model”, Comm. Math. Phys., 310:3 (2012), 765–788 | DOI | MR | Zbl
[7] L. Arkeryd and A. Nouri, “A Milne problem from a Bose condensate with excitations”, Kinet. Relat. Models, 6:4 (2013), 671–686 | DOI | MR | Zbl
[8] A. A. Arsen'ev, “The Cauchy problem for the linearized Boltzmann equation”, U.S.S.R. Comput. Math. Math. Phys., 5:5 (1975), 110–136 | DOI | MR | Zbl
[9] R. Balescu, Statistical mechanics of charged particles, Monographs in Statistical Physics and Thermodynamics, 4, Intersci. Publ. John Wiley Sons, Ltd., London–New York–Sydney, 1963, xii+477 pp. | MR | Zbl
[10] A. V. Bobylev, Kinetic equations, v. 1, De Gruyter Ser. Appl. Numer. Math., 5/1, Boltzmann equation, Maxwell models, and hydrodynamics beyond Navier–Stokes, De Gruyter, Berlin, 2020, xiii+244 pp. | DOI | Zbl
[11] A. V. Bobylev and C. Cercignani, “Discrete velocity models without nonphysical invariants”, J. Stat. Phys., 97:3-4 (1999), 677–686 | DOI | MR | Zbl
[12] A. V. Bobylev and S. B. Kuksin, “Boltzmann equation В nd wave kinetic equations”, Keldysh Institute Preprints, 2023, 031, 20 pp. (Russian) | DOI
[13] A. V. Bobylev, A. Palczewski, and J. Schneider, “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci. Paris Sér. I Math., 320:5 (1995), 639–644 | MR | Zbl
[14] A. V. Bobylev and M. C. Vinerean, “Construction of discrete kinetic models with given invariants”, J. Stat. Phys., 132:1 (2008), 153–170 | DOI | MR | Zbl
[15] N. N. Bogoliubov, “Problems of a dynamical theory in statistical physics”, Studies of statistical mechanics, v. I, Series in Physics, North-Holland Publishing Co., Amsterdam, 1962, 1–118 | MR | Zbl
[16] L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen”, Wien. Ber., 66 (1872), 275–370 | Zbl
[17] J. E. Broadwell, “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414 | DOI | MR | Zbl
[18] H. Cabannes, The discrete Boltzmann equation (theory and applications), Lecture notes given at the University of California, Univ. of California, Berkeley, 1980, viii+55 pp.
[19] T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Publ. Sci. Inst. Mittag-Leffler, 2, Almqvist Wiksells, Uppsala, 1957, 112 pp. | MR | Zbl
[20] C. Cercignani, The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New York, 1988, xii+455 pp. | DOI | MR | Zbl
[21] C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute gases, Appl. Math. Sci., 106, Springer-Verlag, New York, 1994, viii+347 pp. | DOI | MR | Zbl
[22] S. Chapman, “On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas”, Philos. Trans. Roy. Soc. London Ser. A, 216:538-548 (1916), 279–348 | DOI
[23] R. J. DiPerna and P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 312–366 | DOI | MR | Zbl
[24] W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 92:1 (1988), 73–90 | DOI | MR | Zbl
[25] A. Dymov and S. Kuksin, “Formal expansions in stochastic model for wave turbulence 1: kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014 | DOI | MR | Zbl
[26] R. S. Ellis and M. A. Pinsky, “The first and second fluid approximations to the linearized Boltzmann equation”, J. Math. Pures Appl. (9), 54 (1975), 125–156 | MR | Zbl
[27] D. Enskog, Kinetische Theorie der Vorgänge in mässig verdünnten Gasen, Almqvist Wiksells, Uppsala, 1917, vi+160 pp. | Zbl
[28] M. Escobedo and J. J. L. Velázquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238, no. 1124, Amer. Math. Soc., Providence, RI, 2015, v+107 pp. | DOI | MR | Zbl
[29] L. Fainsilberg, P. Kurlberg, and B. Wennberg, “Lattice points on circles and discrete velocity models for the Boltzmann equation”, SIAM J. Math. Anal., 37:6 (2006), 1903–1922 | DOI | MR | Zbl
[30] A. A. Galeev and V. I. Karpman, “Turbulence theory of a weakly non-equilibrium low-density plasma and structure of shock waves”, Soviet Physics JETP, 17:2 (1963), 403–409
[31] R. Gatignol, Théorie cinétique des gaz à répartition discrète de vitesses, Lecture Notes in Phys., 36, Springer-Verlag, Berlin–New York, 1975, ii+219 pp. | DOI | MR
[32] D. Goldstein, B. Sturtevant, and J. E. Broadwell, “Investigations of the motion of discrete-velocity gases”, Rared gas dynamics: theoretical and computational techniques, Progr. Astronaut. Aeronaut., 118, AIAA, Washington, DC, 1989, 100–117 | DOI
[33] E. P. Golubeva and O. M. Fomenko, “Asymptotic distribution of integral points on the three-dimensional sphere”, J. Soviet Math., 52:3 (1990), 3036–3048 | DOI | MR | Zbl
[34] H. Grad, “Principles of the kinetic theory of gases”, Thermodynamik der Gase, Handbuch Phys., 12, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, 205–294 | DOI | MR
[35] E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York, 1985, xi+251 pp. | DOI | MR | Zbl
[36] D. Hilbert, “Begründung der kinetischen Gastheorie”, Math. Anal., 72:4 (1912), 562–577 | DOI | MR | Zbl
[37] R. Illner and T. Platkowski, “Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory”, SIAM Rev., 30:2 (1988), 213–255 | DOI | MR | Zbl
[38] H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87:2 (1987), 385–401 | DOI | MR | Zbl
[39] M. Kac, Probability and related topics in physical sciences (Boulder, CO 1957), Lectures in Appl. Math., Intersci. Publ., London–New York, 1959, xiii+266 pp. | MR | Zbl
[40] L. D. Landau, “Kinetic equation for the case of Coulomb interaction”, Phys. Z. Sowjetunion, 10 (1936), 154–164 | Zbl
[41] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 1, Pergamon Internat. Library Sci. Tech. Engrg. Social Stud., Mechanics, 3rd ed., Pergamon Press, Oxford–Elmsford, NY, 1981, xxvii+169 pp. | MR
[42] O. E. Lanford III, “Time evolution of large classical systems”, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, WA 1974), Lecture Notes in Phys., 38, Springer-Verlag, Berlin–New York, 1975, 1–111 | DOI | MR | Zbl
[43] E. M. Lifshitz and L. P. Pitaevskii, Course of theoretical physics, v. 10, Pergamon Internat. Library Sci. Tech. Engrg. Social Stud., Physical kinetics, Pergamon Press, Oxford–Elmsford, NY, 1981, xi+452 pp. | MR
[44] Yu. V. Linnik, Ergodic properties of algebraic fields, Ergeb. Math. Grenzgeb., 45, Springer-Verlag New York Inc., New York, 1968, ix+192 pp. | MR | Zbl
[45] A. M. Lyapunov, The general problem of the stability of motion, Taylor Francis Group, London, 1992, x+270 pp. | MR | Zbl
[46] N. B. Maslova and A. N. Firsov, “Solution of the Cauchy problem for the Bolzmann equation. I”, Vestn. Leningrad Univ., 1975, no. 19, 83–88 (Russian) | MR | Zbl
[47] J. C. Maxwell, “On the dynamical theory of gases”, Philos. Trans. Roy. Soc. London, 157 (1867), 49–88 | DOI
[48] D. Morgenstern, “General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell–Boltzmann equation in the case of Maxwellian molecules”, Proc. Natl. Acad. Sci. U.S.A., 40:8 (1954), 719–721 | DOI | MR | Zbl
[49] L. W. Nordheim, “On the kinetic method in the new statistics and application in the electron theory of conductivity”, Proc. Roy. Soc. London Ser. A, 119:783 (1928), 689–698 | DOI | Zbl
[50] A. Palczewski, J. Schneider, and A. V. Bobylev, “A consistency result for a discrete-velocity model of the Boltzmann equation”, SIAM J. Numer. Anal., 34:5 (1997), 1865–1883 | DOI | MR | Zbl
[51] V. A. Panferov and A. G. Heintz, “A new consistent discrete-velocity model for the Boltzmann equation”, Math. Methods Appl. Sci., 25:7 (2002), 571–593 | DOI | MR | Zbl
[52] P. Sarnak, Some applications of modular forms, Cambridge Tracts in Math., 99, Cambridge Univ. Press, Cambridge, 1990, x+111 pp. | DOI | MR | Zbl
[53] A. N. Tikhonov, A. B. Vasil'eva, and A. G. Sveshnikov, Differential equations, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, viii+238 pp. | MR | Zbl
[54] E. A. Uehling and G. E. Uhlenbeck, “Transport phenomena in Einstein–Bose and Fermi–Dirac gases. I”, Phys. Rev. (2), 43:7 (1933), 552–561 | DOI | Zbl
[55] S. Ukai, “On the existence of global solutions of mixed problem for non-linear Boltzmann equation”, Proc. Japan Acad., 50:3 (1974), 179–184 | DOI | MR | Zbl
[56] V. V. Vedenyapin, “Velocity inductive construction for mixtures”, Transport Theory Statist. Phys., 28:7 (1999), 727–742 | DOI | Zbl
[57] V. V. Vedenyapin and Yu. N. Orlov, “Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation”, Theoret. and Math. Phys., 121:2 (1999), 1516–1523 | DOI | MR | Zbl
[58] C. Villani, “A review of mathematical topics in collisional kinetic theory”, Handbook of mathematical fluid dynamics, v. 1, Noth-Holland, Amsterdam, 2002, 71–305 | DOI | MR | Zbl
[59] A. A. Vlasov, “Vibration properties of an electron gas”, Zh. Experiment. Teor. Fiz., 8:3 (1938), 291–318 (Russian) | Zbl
[60] V. E. Zakharov, “A solvable model of weak turbulence”, Prikl. Mech. Tech. Fiz. (USSR), 1965, no. 1, 14–20 (Russian)
[61] E. Zermelo, “Ueber einen Satz der Dynamik und die mechanische Wärmetheorie”, Ann. Phys., 293:3 (1896), 485–494 | DOI | Zbl