Sequences of independent functions and structure of rearrangement invariant spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 375-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main aim of the survey is to present results of the last decade on the description of subspaces spanned by independent functions in $L_p$-spaces and Orlicz spaces on the one hand, and in general rearrangement invariant spaces on the other. A new approach is proposed, which is based on a combination of results in the theory of rearrangement invariant spaces, methods of the interpolation theory of operators, and some probabilistic ideas. The problem of the uniqueness of the distribution of a function such that a sequence of its independent copies spans a given subspace is considered. A general principle is established for the comparison of the complementability of subspaces spanned by a sequence of independent functions in a rearrangement invariant space on $[0,1]$ and by pairwise disjoint copies of these functions in a certain space on the half-line $(0,\infty)$. As a consequence of this principle we obtain, in particular, the classical Dor–Starbird theorem on the complementability of subspaces spanned by independent functions in the $L_p$-spaces. Bibliography: 103 titles.
Keywords: independent functions, $L_p$-space, rearrangement invariant space, Orlicz function, Orlicz space, $p$-convex function, $p$-concave function, Boyd indices, Rosenthal's inequalities, Kruglov property, $\mathcal K$-functional, complemented subspace, projection.
@article{RM_2024_79_3_a0,
     author = {S. V. Astashkin},
     title = {Sequences of independent functions and structure of rearrangement invariant spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {375--457},
     year = {2024},
     volume = {79},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_3_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Sequences of independent functions and structure of rearrangement invariant spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 375
EP  - 457
VL  - 79
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_3_a0/
LA  - en
ID  - RM_2024_79_3_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Sequences of independent functions and structure of rearrangement invariant spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 375-457
%V 79
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2024_79_3_a0/
%G en
%F RM_2024_79_3_a0
S. V. Astashkin. Sequences of independent functions and structure of rearrangement invariant spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 3, pp. 375-457. http://geodesic.mathdoc.fr/item/RM_2024_79_3_a0/

[1] F. Albiac and N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006, xii+373 pp. | DOI | MR | Zbl

[2] S. V. Astashkin, “On subspaces generated by independent functions in symmetric spaces with the Kruglov property”, St. Petersburg Math. J., 25:4 (2014), 513–527 | DOI | MR | Zbl

[3] S. V. Astashkin, “Approximation of subspaces of symmetric spaces generated by independent functions”, Math. Notes, 96:5 (2014), 625–633 | DOI | MR | Zbl

[4] S. V. Astashkin, “On symmetric spaces containing isomorphic copies of Orlicz sequence spaces”, Comment. Math., 56:1 (2016), 29–44 | DOI | MR | Zbl

[5] S. V. Astashkin, The Rademacher system in function spaces, Birkhäuser/Springer, Cham, 2020, xx+559 pp. | DOI | MR | Zbl

[6] S. V. Astashkin, “The structure of subspaces in Orlicz spaces lying between $L^1$ and $L^2$”, Math. Z., 303:4 (2023), 91, 24 pp. | DOI | MR | Zbl

[7] S. V. Astashkin, “On subspaces of Orlicz spaces spanned by independent copies of a mean zero function”, Izv. Math., 88:4 (2024), 601–625

[8] S. V. Astashkin and M. Sh. Braverman, “A subspace of a symmetric space, generated by a Rademacher system with vector coefficients”, Operator equations in function spaces, Voronezh State University, Voronezh, 1986, 3–10 (Russian) | MR | Zbl

[9] S. V. Astashkin and G. P. Curbera, “Rosenthal's space revisited”, Studia Math., 262:2 (2022), 197–224 | DOI | MR | Zbl

[10] S. V. Astashkin, L. Maligranda, and E. M. Semenov, “Multiplicator space and complemented subspaces of rearrangement invariant space”, J. Funct. Anal., 202:1 (2003), 247–276 | DOI | MR | Zbl

[11] S. V. Astashkin, E. M. Semenov, and F. A. Sukochev, “Banach–Saks type properties in rearrangement-invariant spaces with the Kruglov property”, Houston J. Math., 35:3 (2009), 959–973 | MR | Zbl

[12] S. V. Astashkin and F. A. Sukochev, “Comparison of sums of independent and disjoint functions in symmetric spaces”, Math. Notes, 76:4 (2004), 449–454 | DOI | MR | Zbl

[13] S. V. Astashkin and F. A. Sukochev, “Series of independent random variables in rearrangement invariant spaces: an operator approach”, Israel J. Math., 145 (2005), 125–156 | DOI | MR | Zbl

[14] S. V. Astashkin and F. A. Sukochev, “Series of independent, mean zero random variables in rearrangement-invariant spaces having the Kruglov property”, J. Math. Sci. (N. Y.), 148:6 (2008), 795–809 | DOI | MR

[15] S. V. Astashkin and F. A. Sukochev, “Sequences of independent identically distributed functions in rearrangement invariant spaces”, Function spaces VIII, Banach Center Publ., 79, Inst. Math., Polish Acad. Sci., Warsaw, 2008, 27–37 | MR | Zbl

[16] S. V. Astashkin and F. A. Sukochev, “Best constants in Rosenthal-type inequalities and the Kruglov operator”, Ann. Probab., 38:5 (2010), 1986–2008 | DOI | MR | Zbl

[17] S. V. Astashkin and F. A. Sukochev, “Independent functions and the geometry of Banach spaces”, Russian Math. Surveys, 65:6 (2010), 1003–1081 | DOI | MR | Zbl

[18] S. V. Astashkin and F. A. Sukochev, “Orlicz sequence spaces spanned by identically distributed independent random variables in $L_p$-spaces”, J. Math. Anal. Appl., 413:1 (2014), 1–19 | DOI | MR | Zbl

[19] S. Astashkin, F. A. Sukochev, and D. Zanin, “Disjointification inequalities in symmetric quasi-Banach spaces and their applications”, Pacific J. Math., 270:2 (2014), 257–285 | DOI | MR | Zbl

[20] S. Astashkin, F. Sukochev, and D. Zanin, “On uniqueness of distribution of a random variable whose independent copies span a subspace in $L_p$”, Studia Math., 230:1 (2015), 41–57 | DOI | MR | Zbl

[21] S. Astashkin, F. Sukochev, and D. Zanin, “The distribution of a random variable whose independent copies span $\ell_M$ is unique”, Rev. Mat. Complut., 35:3 (2022), 815–834 | DOI | MR | Zbl

[22] S. Banach, Théorie des opérations linéaires, Monogr. Mat., 1, Inst. Mat. PAN, Warszawa, 1932, vii+254 pp. | MR | Zbl

[23] S. Banach and S. Mazur, “Zur Theorie der linearen Dimension”, Studia Math., 4 (1933), 100–112 | DOI | Zbl

[24] G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, “On uncomplemented subspaces of $L_p$, $1

2$”, Israel J. Math., 26:2 (1977), 178–187 | DOI | MR | Zbl

[25] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl

[26] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | Zbl

[27] J. Bourgain, “A counterexample to a complementation problem”, Compos. Math., 43:1 (1981), 133–144 | MR | Zbl

[28] J. Bourgain, “Bounded orthogonal systems and the $\Lambda(p)$-set problem”, Acta Math., 162:3-4 (1989), 227–245 | DOI | MR | Zbl

[29] M. Sh. Braverman, “Complementability of subspaces generated by independent functions in a symmetric space”, Funct. Anal. Appl., 16:2 (1982), 129–130 | DOI | MR | Zbl

[30] M. Sh. Braverman, “Symmetric spaces and sequences of independent random variables”, Funct. Anal. Appl., 19:4 (1985), 315–316 | DOI | MR | Zbl

[31] M. Sh. Braverman, “On some moment conditions for sums of independent random variables”, Probab. Math. Statist., 14:1 (1993), 45–56 | MR | Zbl

[32] M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, London Math. Soc. Lecture Note Ser., 194, Cambridge Univ. Press, Cambridge, 1994, viii+116 pp. | DOI | MR | Zbl

[33] M. Braverman, “Independent random variables in Lorentz spaces”, Bull. London Math. Soc., 28:1 (1996), 79–87 | DOI | MR | Zbl

[34] J. Bretagnolle and D. Dacunha-Castelle, “Mesures aléatoires et espaces d'Orlicz”, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A877–A880 | MR | Zbl

[35] J. Bretagnolle and D. Dacunha-Castelle, “Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des espaces $L^p$”, Ann. Sci. École Norm. Sup. (4), 2:4 (1969), 437–480 | DOI | MR | Zbl

[36] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, 47, North-Holland Publishing Co., Amsterdam, 1991, xvi+718 pp. | MR | Zbl

[37] N. L. Carothers and S. J. Dilworth, “Geometry of Lorentz spaces via interpolation”, Texas functional analysis seminar 1985–1986 (Austin, TX 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 107–133 | MR | Zbl

[38] N. L. Carothers and S. J. Dilworth, “Inequalities for sums of independent random variables”, Proc. Amer. Math. Soc., 104:1 (1988), 221–226 | DOI | MR | Zbl

[39] J. Creekmore, “Type and cotype in Lorentz $L_{pq}$ spaces”, Nederl. Akad. Wetensch. Indag. Math., 43:2 (1981), 145–152 | DOI | MR | Zbl

[40] D. Dacunha-Castelle, “Variables aléatoires échangeables et espaces d'Orlicz”, Séminaire Maurey–Schwartz 1974–1975. Espaces $L^p$, applications radonifiantes et géométrie des espaces de Banach, École Polytech., Centre Math., Paris, 1975, Exp. X, XI, 21 pp. | MR | Zbl

[41] J. Diestel, Sequences and series in Banach spaces, Grad. Texts in Math., 92, Springer-Verlag, New York, 1984, xii+261 pp. | DOI | MR | Zbl

[42] S. J. Dilworth, “Special Banach lattices and their applications”, Handbook of the geometry of Banach spaces, v. 1, North-Holland Publishing Co., Amsterdam, 2001, 497–532 | DOI | MR | Zbl

[43] L. E. Dor, “On projections in $L_1$”, Ann. of Math. (2), 102:3 (1975), 463–474 | DOI | MR | Zbl

[44] L. E. Dor and T. Starbird, “Projections of $L_p$ onto subspaces spanned by independent random variables”, Compos. Math., 39:2 (1979), 141–175 | MR | Zbl

[45] R. J. Elliott, Stochastic calculus and applications, Appl. Math. (N. Y.), 18, Springer-Verlag, New York, 1982, ix+302 pp. | MR | Zbl

[46] G. Fichtenholz and L. Kantorovitch (Kantorovich), “Sur les opérations linéaires dans l'espace des fonctions bornées”, Studia Math., 5 (1934), 69–98 | DOI | Zbl

[47] T. Figiel, W. B. Johnson, and G. Schechtman, “Factorizations of natural embeddings of $l_p^n$ into $L_r$. I”, Studia Math., 89:1 (1988), 79–103 | DOI | MR | Zbl

[48] T. Figiel, W. B. Johnson, and L. Tzafriri, “On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces”, J. Approx. Theory, 13:4 (1975), 395–412 | DOI | MR | Zbl

[49] V. F. Gaposhkin, “Lacunary series and independent functions”, Russian Math. Surveys, 21:6 (1966), 1–82 | DOI | MR | Zbl

[50] E. D. Gluskin, “Diameter of the Minkowski compactum is approximately equal to $n$”, Funct. Anal. Appl., 15:1 (1981), 57–58 | DOI | MR | Zbl

[51] I. Ts. Gohberg and A. S. Markus, “Stability of bases in Banach and Hilbert spaces”, Izv. Akad. Nauk Mold.SSR, 1962, no. 5, 17–35 (Russian) | MR

[52] Y. Gordon, A. Litvak, C. Schütt, and E. Werner, “Geometry of spaces between polytopes and related zonotopes”, Bull. Sci. Math., 126:9 (2002), 733–762 | DOI | MR | Zbl

[53] F. L. Hérnandez and E. M. Semenov, “Subspaces generated by translations in rearrangement invariant spaces”, J. Funct. Anal., 169:1 (1999), 52–80 | DOI | MR | Zbl

[54] J. Hoffman-Jørgensen, “Sums of independent Banach space valued random variables”, Studia Math., 52 (1974), 159–186 | DOI | MR | Zbl

[55] T. Holmstedt, “Interpolation of quasi-normed spaces”, Math. Scand., 26:1 (1970), 177–199 | DOI | MR | Zbl

[56] Yong Jiao, F. Sukochev, and D. Zanin, “Sums of independent and freely independent identically distributed random variables”, Studia Math., 251:3 (2020), 289–315 | DOI | MR | Zbl

[57] W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., Providence, RI, 1979, v+298 pp. | DOI | MR | Zbl

[58] W. B. Johnson and G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl

[59] M. I. Kadec, “Linear dimension of the spaces $L_p$ and $l_q$”, Uspekhi Mat. Nauk, 13:6(84) (1958), 95–98 (Russian) | MR | Zbl

[60] M. I. Kadets (Kadec) and B. S. Mityagin, “Complemented subspaces in Banach spaces”, Russian Math. Surveys, 28:6 (1973), 77–95 | DOI | MR | Zbl

[61] M. I. Kadec and A. Pełczyński, “Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$”, Studia Math., 21 (1961/1962), 161–176 | DOI | MR | Zbl

[62] J.-P. Kahane, Some random series of functions, D. C. Heath and Co. Raytheon Education Co., Lexington, MA, 1968, viii+184 pp. | MR | Zbl

[63] A. Kamińska and L. Maligranda, “Order convexity and concavity in Lorentz spaces $\Lambda_{p,w}$, $0

\infty$”, Studia Math., 160:3 (2004), 267–286 | DOI | MR | Zbl

[64] L. V. Kantorovich and G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | Zbl

[65] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl

[66] B. S. Kashin and A. A. Saakyan, Orthogonal series, 2nd ed., Actuarila and Financial Center, Moscow, 1999, x+550 pp. ; English transl. of 1st ed. Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | Zbl | DOI | MR | Zbl

[67] A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116 | DOI | MR | Zbl

[68] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | Zbl

[69] S. G. Kreĭn, Ju. I. Petunin, and E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | Zbl

[70] V. M. Kruglov, “A note on infinitely divisible distributions”, Theory Probab. Appl., 15:2 (1970), 319–324 | DOI | MR | Zbl

[71] S. Kwapień and C. Schütt, “Some combinatorial and probabilistic inequalities and their applications to Banach space theory”, Studia Math., 82:1 (1985), 91–106 | DOI | MR | Zbl

[72] S. Kwapień and W. A. Woyczyński, Random series and stohastic integrals: single and multiple, Probab. Appl., Birkhäuser Boston, Inc., Boston, MA, 1992, xvi+360 pp. | MR | Zbl

[73] M. Ledoux and M. Talagrand, Probability in Banach spaces. Isoperimetry and processes, Ergeb. Math. Grenzgeb. (3), 23, Springer-Verlag, Berlin, 1991, xii+480 pp. | DOI | MR | Zbl

[74] J. Lindenstrauss, “On complemented subspaces of $m$”, Israel J. Math., 5 (1967), 153–156 | DOI | MR | Zbl

[75] J. Lindenstrauss and A. Pełczyński, “Absolutely summing operators in ${\mathscr L}_p$ spaces and their applications”, Studia Math., 29 (1968), 275–326 | DOI | MR | Zbl

[76] J. Lindenstrauss and A. Pełczyński, “Contributions to the theory of the classical Banach spaces”, J. Funct. Anal., 8:2 (1971), 225–249 | DOI | MR | Zbl

[77] J. Lindenstrauss and L. Tzafriri, “On the complemented subspaces problem”, Israel J. Math., 9 (1971), 263–269 | DOI | MR | Zbl

[78] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin–New York, 1977, xiii+188 pp. | MR | Zbl

[79] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[80] L. Maligranda, Orlicz spaces and interpolation, Sem. Mat., 5, Univ. Estad. Campinas, Dep. de Matemática, Campinas, SP, 1989, iii+206 pp. | MR | Zbl

[81] J. Marcinkiewicz and A. Zygmund, “Remarque sur la loi du logarithme itéré”, Fund. Math., 29 (1937), 215–222 | DOI | Zbl

[82] B. S. Mityagin, “The homotopy structure of the linear group of a Banach space”, Russian Math. Surveys, 25:5 (1970), 59–103 | DOI | MR | Zbl

[83] S. Montgomery-Smith, “Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables”, Israel J. Math., 131 (2002), 51–60 | DOI | MR | Zbl

[84] S. Montgomery-Smith and E. Semenov, “Random rearrangements and operators”, Voronezh winter mathematical schools, Amer. Math. Soc. Transl. Ser. 2, 184, Adv. Math. Sci., 37, Amer. Math. Soc., Providence, RI, 1998, 157–183 | DOI | MR | Zbl

[85] P. F. X. Müller, Isomorphisms between $H^1$ spaces, IMPAN Monogr. Mat. (N. S.), 66, Birkhäuser Verlag, Basel, 2005, xiv+453 pp. | MR | Zbl

[86] R. E. A. C. Paley, “Some theorems on abstract spaces”, Bull. Amer. Math. Soc., 42:4 (1936), 235–240 | DOI | MR | Zbl

[87] A. Pełczyński, “Projections in certain Banach spaces”, Studia Math., 19:2 (1960), 209–228 | DOI | MR | Zbl

[88] A. Pełczyński and H. P. Rosenthal, “Localization techniques in $L^{p}$ spaces”, Studia Math., 52:3 (1975), 263–289 | MR | Zbl

[89] G. Peshkir (Peskir) and A. N. Shiryaev, “The Khintchine inequalities and martingale expanding sphere of their action”, Russian Math. Surveys, 50:5 (1995), 849–904 | DOI | MR | Zbl

[90] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conf. Ser. in Math., 60, Amer. Math. Soc., Providence, RI, 1986, x+154 pp. | DOI | MR | Zbl

[91] Yu. V. Prokhorov, “An extremal problem in probability theory”, Theory Probab. Appl., 4:2 (1959), 201–203 | DOI | MR | Zbl

[92] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991, xii+449 pp. | MR | Zbl

[93] Y. Raynaud and C. Schütt, “Some results on symmetric subspaces of $L^1$”, Studia Math., 89:1 (1988), 27–35 | DOI | MR | Zbl

[94] V. A. Rodin and E. M. Semyonov (Semenov), “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[95] V. A. Rodin and E. M. Semenov, “Complementability of the subspace generated by the Rademacher system in a symmetric space”, Funct. Anal. Appl., 13:2 (1979), 150–151 | DOI | MR | Zbl

[96] H. P. Rosenthal, “On the subspaces of $L^p$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl

[97] H. P. Rosenthal, “On subspaces of $L^p$”, Ann. of Math. (2), 97:2 (1973), 344–373 | DOI | MR | Zbl

[98] W. Rudin, “Trigonometric series with gaps”, J. Math. Mech., 9:2 (1960), 203–227 | DOI | MR | Zbl

[99] C. Schütt, “On the embedding of 2-concave Orlicz spaces into $L^1$”, Studia Math., 113:1 (1995), 73–80 | DOI | MR | Zbl

[100] I. Singer, Bases in Banach spaces, v. I, Grundlehren Math. Wiss., 154, Springer-Verlag, New York–Berlin, 1970, viii+668 pp. | MR | Zbl

[101] L. Tzafriri, “Uniqueness of structure in Banach spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1635–1669 | DOI | MR | Zbl

[102] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987, xxvi+482 pp. | DOI | MR | Zbl

[103] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press, Cambridge, 1991, xiv+382 pp. | DOI | MR | Zbl