@article{RM_2024_79_2_a2,
author = {Yu. L. Trakhinin},
title = {On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {325--360},
year = {2024},
volume = {79},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/}
}
TY - JOUR AU - Yu. L. Trakhinin TI - On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 325 EP - 360 VL - 79 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/ LA - en ID - RM_2024_79_2_a2 ER -
%0 Journal Article %A Yu. L. Trakhinin %T On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 325-360 %V 79 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/ %G en %F RM_2024_79_2_a2
Yu. L. Trakhinin. On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 2, pp. 325-360. http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/
[1] S. Alinhac, “Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels”, Comm. Partial Differential Equations, 14:2 (1989), 173–230 | DOI | MR | Zbl
[2] A. M. Blokhin, Energy integrals and their applications in problems of gas dynamics, Nauka, Novosibirsk, 1986, 240 СЃ. (Russian) | MR
[3] D. Catania, M. D'Abbicco, and P. Secchi, “Stability of the linearized MHD-Maxwell free interface problem”, Commun. Pure Appl. Anal., 13:6 (2014), 2407–2443 | DOI | MR | Zbl
[4] D. Catania, M. D'Abbicco, and P. Secchi, “Weak stability of the plasma-vacuum interface problem”, J. Differential Equations, 261:6 (2016), 3169–3219 | DOI | MR | Zbl
[5] Shuxing Chen, “Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary”, Front. Math. China, 2:1 (2007), 87–102 ; transl. from Chinese Chinese Ann. Math., 3:2 (1982), 223–232 | DOI | MR | Zbl | MR | Zbl
[6] J.-F. Coulombel, A. Morando, P. Secchi, and P. Trebeschi, “A priori estimates for 3D incompressible current-vortex sheets”, Comm. Math. Phys., 311:1 (2012), 247–275 | DOI | MR | Zbl
[7] J.-F. Coulombel and P. Secchi, “The stability of compressible vortex sheets in two space dimensions”, Indiana Univ. Math. J., 53:4 (2004), 941–1012 | DOI | MR | Zbl
[8] D. Coutand, J. Hole, and S. Shkoller, “Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit”, SIAM J. Math. Anal., 45:6 (2013), 3690–3767 | DOI | MR | Zbl
[9] D. Coutand and S. Shkoller, “Well-posedness of the free-surface incompressible Euler equations with or without surface tension”, J. Amer. Math. Soc., 20:3 (2007), 829–930 | DOI | MR | Zbl
[10] D. Coutand and S. Shkoller, “Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum”, Arch. Ration. Mech. Anal., 206:2 (2012), 515–616 | DOI | MR | Zbl
[11] Jun Fang and Li Zhang, “Two-dimensional magnetohydrodynamics simulations of young Type Ia supernova remnants”, Monthly Notices Roy. Astronom. Soc., 424:4 (2012), 2811–2820 | DOI
[12] H. Freistühler and Y. Trakhinin, “Symmetrizations of RMHD equations and stability of relativistic current-vortex sheets”, Classical Quantum Gravity, 30:8 (2013), 085012, 17 pp. | DOI | MR | Zbl
[13] K. O. Friedrichs, “The identity of weak and strong extensions of differential operators”, Trans. Amer. Math. Soc., 55:1 (1944), 132–151 | DOI | MR | Zbl
[14] K. O. Friedrichs, “Symmetric hyperbolic linear differential equations”, Comm. Pure Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl
[15] S. K. Godunov, “An interesting class of quasilinear systems”, Soviet Math. Dokl., 2 (1961), 947–949 | MR | Zbl
[16] S. K. Godunov, “Symmetric form of equations of magnetic hydrodynamics”, Chislennye Metody Mekh. Sploshnoi Sredy, 3:1 (1972), 26–34 (Russian)
[17] S. K. Godunov, Equations of mathematical physics, 2nd revised and augmented ed., Nauka, Moscow, 1979, 391 pp. ; French transl of 1st ed. S. Godounov, Équations de la physique mathématique, Mir, Moscou, 1973, 452 pp. | MR | MR | Zbl
[18] S. K. Godunov and E. I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer Acad./Plenum Publ., New York, 2003, viii+258 pp. | DOI | MR | Zbl
[19] J. P. Goedbloed, R. Keppens, and S. Poedts, Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, Cambridge Univ. Press, Cambridge, 2010, 650 pp. | DOI
[20] Yan Guo and I. Tice, “Compressible, inviscid Rayleigh–Taylor instability”, Indiana Univ. Math. J., 60:2 (2011), 677–712 | DOI | MR | Zbl
[21] L. Hörmander, “The boundary problems of physical geodesy”, Arch. Ration. Mech. Anal., 62:1 (1976), 1–52 | DOI | MR | Zbl
[22] Juhi Jang and N. Masmoudi, “Well-posedness of compressible Euler equations in a physical vacuum”, Comm. Pure Appl. Math., 68:1 (2015), 61–111 | DOI | MR | Zbl
[23] T. Kato, “Quasi-linear equations of evolution, with applications to partial differential equations”, Spectral theory and differential equations, Lecture Notes in Math., 448, Springer, Berlin, 1975, 25–70 | DOI | MR | Zbl
[24] H.-O. Kreiss, “Initial boundary value problems for hyperbolic systems”, Comm. Pure Appl. Math., 23:3 (1970), 277–298 | DOI | MR | Zbl
[25] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford, 1987, xiv+539 pp.
[26] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 8, Electrodynamics of continuous media, 2nd ed., Pergamon Press, Oxford–New York, 1984, xii+459 pp.
[27] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[28] H. Lindblad, “Well posedness for the motion of a compressible liquid with free surface boundary”, Comm. Math. Phys., 260:2 (2005), 319–392 | DOI | MR | Zbl
[29] Tao Luo, Zhouping Xin and Huihui Zeng, “Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation”, Arch. Ration. Mech. Anal., 213:3 (2014), 763–831 | DOI | MR | Zbl
[30] Chenyun Luo and Junyan Zhang, “Local well-posedness for the motion of a compressible gravity water wave with vorticity”, J. Differential Equations, 332 (2022), 333–403 | DOI | MR | Zbl
[31] N. Mandrik and Y. Trakhinin, “Influence of vacuum electric field on the stability of a plasma-vacuum interface”, Commun. Math. Sci., 12:6 (2014), 1065–1100 | DOI | MR | Zbl
[32] A. Morando, P. Secchi, Y. Trakhinin, and P. Trebeschi, “Stability of an incompressible plasma-vacuum interface with displacement current in vacuum”, Math. Methods Appl. Sci., 43:12 (2020), 7465–7483 | DOI | MR | Zbl
[33] A. Morando, P. Secchi, and P. Trebeschi, “Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems”, J. Hyperbolic Differ. Equ., 6:4 (2009), 753–808 | DOI | MR | Zbl
[34] A. Morando, Y. Trakhinin, and P. Trebeschi, “Well-posedness of the linearized problem for MHD contact discontinuities”, J. Differential Equations, 258:7 (2015), 2531–2571 | DOI | MR | Zbl
[35] A. Morando, Y. Trakhinin, and P. Trebeschi, “Local existence of MHD contact discontinuities”, Arch. Ration. Mech. Anal., 228:2 (2018), 691–742 | DOI | MR | Zbl
[36] M. Ohno and T. Shirota, “On the initial-boundary-value problem for the linearized equations of magnetohydrodynamics”, Arch. Ration. Mech. Anal., 144:3 (1998), 259–299 | DOI | MR | Zbl
[37] M. Ohno, Y. Shizuta, and T. Yanagisawa, “The initial boundary value problem for linear symmetric systems with boundary characteristic of constant multiplicity”, J. Math. Kyoto Univ., 35:2 (1995), 143–210 | DOI | MR | Zbl
[38] J. B. Rauch and F. J. Massey III, “Differentiability of solutions to hyperbolic initial boundary value problems”, Trans. Amer. Math. Soc., 189:3 (1974), 303–318 | DOI | MR | Zbl
[39] M. S. Ruderman and H. J. Fahr, “The effect of magnetic fields on the macroscopic instability of the heliopause. II. Inclusion of solar wind magnetic fields”, Astron. Astrophys., 299 (1995), 258–266
[40] P. Secchi, “Linear symmetric hyperbolic systems with characteristic boundary”, Math. Methods Appl. Sci., 18:11 (1995), 855–870 | DOI | MR | Zbl
[41] P. Secchi, “Some properties of anisotropic Sobolev spaces”, Arch. Math. (Basel), 75:3 (2000), 207–216 | DOI | MR | Zbl
[42] P. Secchi, “On the Nash–Moser iteration technique”, Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2016, 443–457 | DOI | MR | Zbl
[43] P. Secchi and Y. Trakhinin, “Well-posedness of the linearized plasma-vacuum interface problem”, Interfaces Free Bound., 15:3 (2013), 323–357 | DOI | MR | Zbl
[44] P. Secchi and Y. Trakhinin, “Well-posedness of the plasma-vacuum interface problem”, Nonlinearity, 27:1 (2014), 105–169 | DOI | MR | Zbl
[45] P. Secchi, Y. Trakhinin, and Tao Wang, “On vacuum free boundary problems in ideal compressible magnetohydrodynamics”, Bull. London Math. Soc., 55:5 (2023), 2087–2111 | DOI | MR | Zbl
[46] Yongzhong Sun, Wei Wang, and Zhifei Zhang, “Nonlinear stability of the current-vortex sheet to the incompressible MHD equations”, Comm. Pure Appl. Math., 71:2 (2018), 356–403 | DOI | MR | Zbl
[47] S. I. Syrovatskii, “Stability of tangential discontinuities in a magnetohydrodynamical medium”, Zh. Eksperiment. Teor. Fiz., 24:6 (1953), 622–630 (Russian)
[48] Y. Trakhinin, “Existence of compressible current-vortex sheets: variable coefficients linear analysis”, Arch. Ration. Mech. Anal., 177:3 (2005), 331–366 | DOI | MR | Zbl
[49] Y. Trakhinin, “The existence of current-vortex sheets in ideal compressible magnetohydrodynamics”, Arch. Ration. Mech. Anal., 191:2 (2009), 245–310 | DOI | MR | Zbl
[50] Y. Trakhinin, “Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition”, Comm. Pure Appl. Math., 62:11 (2009), 1551–1594 | DOI | MR | Zbl
[51] Y. Trakhinin, “On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD”, J. Differential Equations, 249:10 (2010), 2577–2599 | DOI | MR | Zbl
[52] Y. Trakhinin, “Stability of relativistic plasma-vacuum interfaces”, J. Hyperbolic Differ. Equ., 9:3 (2012), 469–509 | DOI | MR | Zbl
[53] Y. Trakhinin, “On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol”, Commun. Pure Appl. Anal., 15:4 (2016), 1371–1399 | DOI | MR | Zbl
[54] Y. Trakhinin, “Structural stability of shock waves and current-vortex sheets in shallow water magnetohydrodynamics”, Z. Angew. Math. Phys., 71:4 (2020), 118, 13 pp. | DOI | MR | Zbl
[55] Y. Trakhinin and Tao Wang, “Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics”, Arch. Ration. Mech. Anal., 239:2 (2021), 1131–1176 | DOI | MR | Zbl
[56] Y. Trakhinin and Tao Wang, “Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension”, Math. Ann., 383:1-2 (2022), 761–808 | DOI | MR | Zbl
[57] Y. Trakhinin and Tao Wang, “Nonlinear stability of MHD contact discontinuities with surface tension”, Arch. Ration. Mech. Anal., 243:2 (2022), 1091–1149 | DOI | MR | Zbl
[58] Y. Trakhinin and Tao Wang, “Well-posedness for moving interfaces with surface tension in ideal compressible MHD”, SIAM J. Math. Anal., 54:6 (2022), 5888–5921 | DOI | MR | Zbl
[59] A. I. Vol'pert and S. I. Hudjaev, “On the Cauchy problem for composite systems of nonlinear differential equations”, Math. USSR-Sb., 16:4 (1972), 517–544 | DOI | MR | Zbl
[60] Yanjin Wang and Zhouping Xin, “Existence of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics”, Comm. Pure Appl. Math., 77:1 (2024), 583–629 | DOI | MR | Zbl
[61] G. B. Whitham, Linear and nonlinear waves, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xvi+636 pp. | DOI | MR | Zbl