On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 2, pp. 325-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The proof of the local-in-time existence and uniqueness of a smooth solution to a free boundary problem for a hyperbolic system of conservation laws has some additional difficulties if the free boundary is a characteristic of this system. They are connected with the loss of control of the normal derivatives and the possible non-ellipticity of the symbol of the free boundary. Another peculiarity of problems with characteristic free boundary is that usually a loss of derivatives of the coefficients and source terms occurs in a priori estimates for the corresponding linearized problems. Moreover, the boundary conditions in the linearized problem can be non-dissipative, which makes it difficult to use the energy method. We describe methods for overcoming these difficulties. Our main examples are free boundary problems for Euler's equations and the equations of ideal compressible magnetohydrodynamics, for which we review the results on their local well-posedness. Bibliography: 61 titles.
Keywords: hyperbolic system of conservation laws, free boundary problem, characteristic boundary, local existence and uniqueness theorem, loss of derivatives in a priori estimates, non-ellipticity of the boundary symbol, secondary symmetrization, tame estimates, Nash–Moser method.
@article{RM_2024_79_2_a2,
     author = {Yu. L. Trakhinin},
     title = {On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {325--360},
     year = {2024},
     volume = {79},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/}
}
TY  - JOUR
AU  - Yu. L. Trakhinin
TI  - On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 325
EP  - 360
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/
LA  - en
ID  - RM_2024_79_2_a2
ER  - 
%0 Journal Article
%A Yu. L. Trakhinin
%T On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 325-360
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/
%G en
%F RM_2024_79_2_a2
Yu. L. Trakhinin. On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 2, pp. 325-360. http://geodesic.mathdoc.fr/item/RM_2024_79_2_a2/

[1] S. Alinhac, “Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels”, Comm. Partial Differential Equations, 14:2 (1989), 173–230 | DOI | MR | Zbl

[2] A. M. Blokhin, Energy integrals and their applications in problems of gas dynamics, Nauka, Novosibirsk, 1986, 240 СЃ. (Russian) | MR

[3] D. Catania, M. D'Abbicco, and P. Secchi, “Stability of the linearized MHD-Maxwell free interface problem”, Commun. Pure Appl. Anal., 13:6 (2014), 2407–2443 | DOI | MR | Zbl

[4] D. Catania, M. D'Abbicco, and P. Secchi, “Weak stability of the plasma-vacuum interface problem”, J. Differential Equations, 261:6 (2016), 3169–3219 | DOI | MR | Zbl

[5] Shuxing Chen, “Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary”, Front. Math. China, 2:1 (2007), 87–102 ; transl. from Chinese Chinese Ann. Math., 3:2 (1982), 223–232 | DOI | MR | Zbl | MR | Zbl

[6] J.-F. Coulombel, A. Morando, P. Secchi, and P. Trebeschi, “A priori estimates for 3D incompressible current-vortex sheets”, Comm. Math. Phys., 311:1 (2012), 247–275 | DOI | MR | Zbl

[7] J.-F. Coulombel and P. Secchi, “The stability of compressible vortex sheets in two space dimensions”, Indiana Univ. Math. J., 53:4 (2004), 941–1012 | DOI | MR | Zbl

[8] D. Coutand, J. Hole, and S. Shkoller, “Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit”, SIAM J. Math. Anal., 45:6 (2013), 3690–3767 | DOI | MR | Zbl

[9] D. Coutand and S. Shkoller, “Well-posedness of the free-surface incompressible Euler equations with or without surface tension”, J. Amer. Math. Soc., 20:3 (2007), 829–930 | DOI | MR | Zbl

[10] D. Coutand and S. Shkoller, “Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum”, Arch. Ration. Mech. Anal., 206:2 (2012), 515–616 | DOI | MR | Zbl

[11] Jun Fang and Li Zhang, “Two-dimensional magnetohydrodynamics simulations of young Type Ia supernova remnants”, Monthly Notices Roy. Astronom. Soc., 424:4 (2012), 2811–2820 | DOI

[12] H. Freistühler and Y. Trakhinin, “Symmetrizations of RMHD equations and stability of relativistic current-vortex sheets”, Classical Quantum Gravity, 30:8 (2013), 085012, 17 pp. | DOI | MR | Zbl

[13] K. O. Friedrichs, “The identity of weak and strong extensions of differential operators”, Trans. Amer. Math. Soc., 55:1 (1944), 132–151 | DOI | MR | Zbl

[14] K. O. Friedrichs, “Symmetric hyperbolic linear differential equations”, Comm. Pure Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl

[15] S. K. Godunov, “An interesting class of quasilinear systems”, Soviet Math. Dokl., 2 (1961), 947–949 | MR | Zbl

[16] S. K. Godunov, “Symmetric form of equations of magnetic hydrodynamics”, Chislennye Metody Mekh. Sploshnoi Sredy, 3:1 (1972), 26–34 (Russian)

[17] S. K. Godunov, Equations of mathematical physics, 2nd revised and augmented ed., Nauka, Moscow, 1979, 391 pp. ; French transl of 1st ed. S. Godounov, Équations de la physique mathématique, Mir, Moscou, 1973, 452 pp. | MR | MR | Zbl

[18] S. K. Godunov and E. I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer Acad./Plenum Publ., New York, 2003, viii+258 pp. | DOI | MR | Zbl

[19] J. P. Goedbloed, R. Keppens, and S. Poedts, Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, Cambridge Univ. Press, Cambridge, 2010, 650 pp. | DOI

[20] Yan Guo and I. Tice, “Compressible, inviscid Rayleigh–Taylor instability”, Indiana Univ. Math. J., 60:2 (2011), 677–712 | DOI | MR | Zbl

[21] L. Hörmander, “The boundary problems of physical geodesy”, Arch. Ration. Mech. Anal., 62:1 (1976), 1–52 | DOI | MR | Zbl

[22] Juhi Jang and N. Masmoudi, “Well-posedness of compressible Euler equations in a physical vacuum”, Comm. Pure Appl. Math., 68:1 (2015), 61–111 | DOI | MR | Zbl

[23] T. Kato, “Quasi-linear equations of evolution, with applications to partial differential equations”, Spectral theory and differential equations, Lecture Notes in Math., 448, Springer, Berlin, 1975, 25–70 | DOI | MR | Zbl

[24] H.-O. Kreiss, “Initial boundary value problems for hyperbolic systems”, Comm. Pure Appl. Math., 23:3 (1970), 277–298 | DOI | MR | Zbl

[25] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford, 1987, xiv+539 pp.

[26] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 8, Electrodynamics of continuous media, 2nd ed., Pergamon Press, Oxford–New York, 1984, xii+459 pp.

[27] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl

[28] H. Lindblad, “Well posedness for the motion of a compressible liquid with free surface boundary”, Comm. Math. Phys., 260:2 (2005), 319–392 | DOI | MR | Zbl

[29] Tao Luo, Zhouping Xin and Huihui Zeng, “Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation”, Arch. Ration. Mech. Anal., 213:3 (2014), 763–831 | DOI | MR | Zbl

[30] Chenyun Luo and Junyan Zhang, “Local well-posedness for the motion of a compressible gravity water wave with vorticity”, J. Differential Equations, 332 (2022), 333–403 | DOI | MR | Zbl

[31] N. Mandrik and Y. Trakhinin, “Influence of vacuum electric field on the stability of a plasma-vacuum interface”, Commun. Math. Sci., 12:6 (2014), 1065–1100 | DOI | MR | Zbl

[32] A. Morando, P. Secchi, Y. Trakhinin, and P. Trebeschi, “Stability of an incompressible plasma-vacuum interface with displacement current in vacuum”, Math. Methods Appl. Sci., 43:12 (2020), 7465–7483 | DOI | MR | Zbl

[33] A. Morando, P. Secchi, and P. Trebeschi, “Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems”, J. Hyperbolic Differ. Equ., 6:4 (2009), 753–808 | DOI | MR | Zbl

[34] A. Morando, Y. Trakhinin, and P. Trebeschi, “Well-posedness of the linearized problem for MHD contact discontinuities”, J. Differential Equations, 258:7 (2015), 2531–2571 | DOI | MR | Zbl

[35] A. Morando, Y. Trakhinin, and P. Trebeschi, “Local existence of MHD contact discontinuities”, Arch. Ration. Mech. Anal., 228:2 (2018), 691–742 | DOI | MR | Zbl

[36] M. Ohno and T. Shirota, “On the initial-boundary-value problem for the linearized equations of magnetohydrodynamics”, Arch. Ration. Mech. Anal., 144:3 (1998), 259–299 | DOI | MR | Zbl

[37] M. Ohno, Y. Shizuta, and T. Yanagisawa, “The initial boundary value problem for linear symmetric systems with boundary characteristic of constant multiplicity”, J. Math. Kyoto Univ., 35:2 (1995), 143–210 | DOI | MR | Zbl

[38] J. B. Rauch and F. J. Massey III, “Differentiability of solutions to hyperbolic initial boundary value problems”, Trans. Amer. Math. Soc., 189:3 (1974), 303–318 | DOI | MR | Zbl

[39] M. S. Ruderman and H. J. Fahr, “The effect of magnetic fields on the macroscopic instability of the heliopause. II. Inclusion of solar wind magnetic fields”, Astron. Astrophys., 299 (1995), 258–266

[40] P. Secchi, “Linear symmetric hyperbolic systems with characteristic boundary”, Math. Methods Appl. Sci., 18:11 (1995), 855–870 | DOI | MR | Zbl

[41] P. Secchi, “Some properties of anisotropic Sobolev spaces”, Arch. Math. (Basel), 75:3 (2000), 207–216 | DOI | MR | Zbl

[42] P. Secchi, “On the Nash–Moser iteration technique”, Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2016, 443–457 | DOI | MR | Zbl

[43] P. Secchi and Y. Trakhinin, “Well-posedness of the linearized plasma-vacuum interface problem”, Interfaces Free Bound., 15:3 (2013), 323–357 | DOI | MR | Zbl

[44] P. Secchi and Y. Trakhinin, “Well-posedness of the plasma-vacuum interface problem”, Nonlinearity, 27:1 (2014), 105–169 | DOI | MR | Zbl

[45] P. Secchi, Y. Trakhinin, and Tao Wang, “On vacuum free boundary problems in ideal compressible magnetohydrodynamics”, Bull. London Math. Soc., 55:5 (2023), 2087–2111 | DOI | MR | Zbl

[46] Yongzhong Sun, Wei Wang, and Zhifei Zhang, “Nonlinear stability of the current-vortex sheet to the incompressible MHD equations”, Comm. Pure Appl. Math., 71:2 (2018), 356–403 | DOI | MR | Zbl

[47] S. I. Syrovatskii, “Stability of tangential discontinuities in a magnetohydrodynamical medium”, Zh. Eksperiment. Teor. Fiz., 24:6 (1953), 622–630 (Russian)

[48] Y. Trakhinin, “Existence of compressible current-vortex sheets: variable coefficients linear analysis”, Arch. Ration. Mech. Anal., 177:3 (2005), 331–366 | DOI | MR | Zbl

[49] Y. Trakhinin, “The existence of current-vortex sheets in ideal compressible magnetohydrodynamics”, Arch. Ration. Mech. Anal., 191:2 (2009), 245–310 | DOI | MR | Zbl

[50] Y. Trakhinin, “Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition”, Comm. Pure Appl. Math., 62:11 (2009), 1551–1594 | DOI | MR | Zbl

[51] Y. Trakhinin, “On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD”, J. Differential Equations, 249:10 (2010), 2577–2599 | DOI | MR | Zbl

[52] Y. Trakhinin, “Stability of relativistic plasma-vacuum interfaces”, J. Hyperbolic Differ. Equ., 9:3 (2012), 469–509 | DOI | MR | Zbl

[53] Y. Trakhinin, “On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol”, Commun. Pure Appl. Anal., 15:4 (2016), 1371–1399 | DOI | MR | Zbl

[54] Y. Trakhinin, “Structural stability of shock waves and current-vortex sheets in shallow water magnetohydrodynamics”, Z. Angew. Math. Phys., 71:4 (2020), 118, 13 pp. | DOI | MR | Zbl

[55] Y. Trakhinin and Tao Wang, “Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics”, Arch. Ration. Mech. Anal., 239:2 (2021), 1131–1176 | DOI | MR | Zbl

[56] Y. Trakhinin and Tao Wang, “Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension”, Math. Ann., 383:1-2 (2022), 761–808 | DOI | MR | Zbl

[57] Y. Trakhinin and Tao Wang, “Nonlinear stability of MHD contact discontinuities with surface tension”, Arch. Ration. Mech. Anal., 243:2 (2022), 1091–1149 | DOI | MR | Zbl

[58] Y. Trakhinin and Tao Wang, “Well-posedness for moving interfaces with surface tension in ideal compressible MHD”, SIAM J. Math. Anal., 54:6 (2022), 5888–5921 | DOI | MR | Zbl

[59] A. I. Vol'pert and S. I. Hudjaev, “On the Cauchy problem for composite systems of nonlinear differential equations”, Math. USSR-Sb., 16:4 (1972), 517–544 | DOI | MR | Zbl

[60] Yanjin Wang and Zhouping Xin, “Existence of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics”, Comm. Pure Appl. Math., 77:1 (2024), 583–629 | DOI | MR | Zbl

[61] G. B. Whitham, Linear and nonlinear waves, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xvi+636 pp. | DOI | MR | Zbl