@article{RM_2024_79_2_a1,
author = {M. I. Gomoyunov and N. Yu. Lukoyanov},
title = {Minimax solutions of {Hamilton{\textendash}Jacobi} equations in dynamic optimization problems for hereditary systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {229--324},
year = {2024},
volume = {79},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_2_a1/}
}
TY - JOUR AU - M. I. Gomoyunov AU - N. Yu. Lukoyanov TI - Minimax solutions of Hamilton–Jacobi equations in dynamic optimization problems for hereditary systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 229 EP - 324 VL - 79 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2024_79_2_a1/ LA - en ID - RM_2024_79_2_a1 ER -
%0 Journal Article %A M. I. Gomoyunov %A N. Yu. Lukoyanov %T Minimax solutions of Hamilton–Jacobi equations in dynamic optimization problems for hereditary systems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 229-324 %V 79 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2024_79_2_a1/ %G en %F RM_2024_79_2_a1
M. I. Gomoyunov; N. Yu. Lukoyanov. Minimax solutions of Hamilton–Jacobi equations in dynamic optimization problems for hereditary systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 2, pp. 229-324. http://geodesic.mathdoc.fr/item/RM_2024_79_2_a1/
[1] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, “Lyapunov functions for fractional order systems”, Commun. Nonlinear Sci. Numer. Simul., 19:9 (2014), 2951–2957 | DOI | MR | Zbl
[2] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskii, “Theory of equations of neutral type”, J. Soviet Math., 24:6 (1984), 674–719 | DOI | MR | Zbl
[3] A. A. Alikhanov, “A priori estimates for solutions of boundary value problems for fractional-order equations”, Differ. Equ., 46:5 (2010), 660–666 | DOI | MR | Zbl
[4] V. I. Arnold, Mathematical methods of classical mechanics, 3d revised and aygmented ed., Nauka, Moscow, 1989, 472 pp. ; English transl. of 1st ed. Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | Zbl | DOI | MR | Zbl
[5] J.-P. Aubin and G. Haddad, “History path dependent optimal control and portfolio valuation and management”, Positivity, 6:3 (2002), 331–358 | DOI | MR | Zbl
[6] S. Banach, Théorie des opérations linéaires, Monogr. Mat., 1, Inst. Mat. PAN, Warszawa, 1932, vii+254 pp. | MR | Zbl
[7] V. Barbu and G. Da Prato, Hamilton–Jacobi equations in Hilbert spaces, Res. Notes in Math., 86, Pitman, Boston, MA, 1983, v+172 pp. | MR | Zbl
[8] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1997, xviii+570 pp. | DOI | MR | Zbl
[9] E. N. Barron, “Application of viscosity solutions of infinite-dimensional Hamilton–Jacobi–Bellman equations to some problems in distributed optimal control”, J. Optim. Theory Appl., 64:2 (1990), 245–268 | DOI | MR | Zbl
[10] E. Bayraktar and C. Keller, “Path-dependent Hamilton–Jacobi equations in infinite dimensions”, J. Funct. Anal., 275:8 (2018), 2096–2161 | DOI | MR | Zbl
[11] E. Bayraktar and C. Keller, “Path-dependent Hamilton–Jacobi equations with super-quadratic growth in the gradient and the vanishing viscosity method”, SIAM J. Control Optim., 60:3 (2022), 1690–1711 | DOI | MR | Zbl
[12] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and control of infinite dimensional systems, Systems Control Found. Appl., 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2007, xxviii+575 pp. | DOI | MR | Zbl
[13] M. Bergounioux and L. Bourdin, “Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints”, ESAIM Control Optim. Calc. Var., 26 (2020), 35, 38 pp. | DOI | MR | Zbl
[14] J. M. Borwein and D. Preiss, “A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions”, Trans. Amer. Math. Soc., 303:2 (1987), 517–527 | DOI | MR | Zbl
[15] J. M. Borwein and Q. J. Zhu, Techniques of variational analysis, CMS Books Math./Ouvrages Math. SMC, 20, Springer-Verlag, New York, 2005, vi+362 pp. | DOI | MR | Zbl
[16] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., 659, Springer, Berlin, 1978, x+247 pp. | DOI | MR | Zbl
[17] P. Cannarsa and G. Da Prato, “Some results on non-linear optimal control problems and Hamilton–Jacobi equations in infinite dimensions”, J. Funct. Anal., 90:1 (1990), 27–47 | DOI | MR | Zbl
[18] G. Carlier and R. Tahraoui, “Hamilton–Jacobi–Bellman equations for the optimal control of a state equation with memory”, ESAIM Control Optim. Calc. Var., 16:3 (2010), 744–763 | DOI | MR | Zbl
[19] F. Clarke and Yu. S. Ledyaev, “New finite-increment formulas”, Dokl. Math., 48:1 (1994), 75–79 | MR | Zbl
[20] F. H. Clarke and Yu. S. Ledyaev, “Mean value inequalities in Hilbert space”, Trans. Amer. Math. Soc., 344:1 (1994), 307–324 | DOI | MR | Zbl
[21] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and control theory, Grad. Texts in Math., 178, Springer-Verlag, New York, 1998, xiv+276 pp. | DOI | MR | Zbl
[22] R. Cont and D.-A. Fournié, “Functional Itô calculus and stochastic integral representation of martingales”, Ann. Probab., 41:1 (2013), 109–133 | DOI | MR | Zbl
[23] A. Cosso, F. Gozzi, M. Rosestolato, and F. Russo, Path-dependent Hamilton–Jacobi–Bellman equation: uniqueness of Crandall–Lions viscosity solutions, 2023 (v1 – 2021), 46 pp., arXiv: 2107.05959
[24] A. Cosso and F. Russo, “Crandall–Lions viscosity solutions for path-dependent PDEs: the case of heat equation”, Bernoulli, 28:1 (2022), 481–503 | DOI | MR | Zbl
[25] M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 282:2 (1984), 487–502 | DOI | MR | Zbl
[26] M. G. Crandall, H. Ishii, and P.-L. Lions, “Uniqueness of viscosity solutions of Hamilton–Jacobi equations revisited”, J. Math. Soc. Japan, 39:4 (1987), 581–596 | DOI | MR | Zbl
[27] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[28] M. G. Crandall and P.-L. Lions, “Hamilton–Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions”, J. Funct. Anal., 62:3 (1985), 379–396 | DOI | MR | Zbl
[29] M. G. Crandall and P.-L. Lions, “Hamilton–Jacobi equations in infinite dimensions. II. Existence of viscosity solutions”, J. Funct. Anal., 65:3 (1986), 368–405 | DOI | MR | Zbl
[30] M. G. Crandall and P.-L. Lions, “Remarks on the existence and uniqueness of unbounded viscosity solutions of Hamilton–Jacobi equations”, Illinois J. Math., 31:4 (1987), 665–688 | DOI | MR | Zbl
[31] R. Deville, G. Godefroy, and V. Zizler, “A smooth variational principle with applications to Hamilton–Jacobi equations in infinite dimensions”, J. Funct. Anal., 111:1 (1993), 197–212 | DOI | MR | Zbl
[32] K. Diethelm, The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Math., 2004, Springer-Verlag, Berlin, 2010, viii+247 pp. | DOI | MR | Zbl
[33] B. Dupire, Functional Itô calculus, Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS, 2009, 25 pp. https://ssrn.com/abstract=1435551
[34] I. Ekren, N. Touzi, and Jianfeng Zhang, “Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I”, Ann. Probab., 44:2 (2016), 1212–1253 | DOI | MR | Zbl
[35] I. Ekren, N. Touzi, and Jianfeng Zhang, “Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II”, Ann. Probab., 44:4 (2016), 2507–2553 | DOI | MR | Zbl
[36] L. C. Evans and P. E. Souganidis, “Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations”, Indiana Univ. Math. J., 33:5 (1984), 773–797 | DOI | MR | Zbl
[37] G. Fabbri, F. Gozzi, and A. Swiech, Stochastic optimal control in infinite dimension. Dynamic programming and HJB equations, Probab. Theory Stoch. Model., 82, Springer, Cham, 2017, xxiii+916 pp. | DOI | MR | Zbl
[38] S. Federico, B. Goldys, and F. Gozzi, “HJB equations for the optimal control of differential equations with delays and state constraints. I. Regularity of viscosity solutions”, SIAM J. Control Optim., 48:8 (2010), 4910–4937 | DOI | MR | Zbl
[39] S. Federico, B. Goldys, and F. Gozzi, “HJB equations for the optimal control of differential equations with delays and state constraints. II. Verification and optimal feedbacks”, SIAM J. Control Optim., 49:6 (2011), 2378–2414 | DOI | MR | Zbl
[40] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, Appl. Math., 1, Springer-Verlag, Berlin–New York, 1975, vii+222 pp. | DOI | MR | Zbl
[41] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions, Stoch. Model. Appl. Probab., 25, 2nd ed., Springer, New York, 2006, xviii+429 pp. | DOI | MR | Zbl
[42] H. Frankowska, “Lower semicontinuous solutions of Hamilton–Jacobi–Bellman equations”, SIAM J. Control Optim., 31:1 (1993), 257–272 | DOI | MR | Zbl
[43] F. Gantmakher, Lectures in analytical mechanics, Mir Publishers, Moscow, 1970, 264 pp. | Zbl
[44] G. G. Garnysheva and A. I. Subbotin, “Strategies of minimax aiming in the direction of the quasigradient”, J. Appl. Math. Mech., 58:4 (1994), 575–581 | DOI | MR | Zbl
[45] I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963, vii+232 pp. | MR | Zbl
[46] M. I. Gomoyunov, “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Fract. Calc. Appl. Anal., 21:5 (2018), 1238–1261 | DOI | MR | Zbl
[47] M. I. Gomoyunov, “Approximation of fractional order conflict-controlled systems”, Progr. Fract. Differ. Appl., 5:2 (2019), 143–155 | DOI
[48] M. I. Gomoyunov, “Dynamic programming principle and Hamilton–Jacobi–Bellman equations for fractional-order systems”, SIAM J. Control Optim., 58:6 (2020), 3185–3211 | DOI | MR | Zbl
[49] M. Gomoyunov, “Solution to a zero-sum differential game with fractional dynamics via approximations”, Dyn. Games Appl., 10:2 (2020), 417–443 | DOI | MR | Zbl
[50] M. I. Gomoyunov, “To the theory of differential inclusions with Caputo fractional derivatives”, Differ. Equ., 56:11 (2020), 1387–1401 | DOI | MR | Zbl
[51] M. I. Gomoyunov, “Minimax solutions of homogeneous Hamilton–Jacobi equations with fractional-order coinvariant derivatives”, Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S97–S116 | DOI | MR | Zbl
[52] M. I. Gomoyunov, “Criteria of minimax solutions for Hamilton-Jacobi equations with coinvariant fractional-order derivatives”, Tr. Inst. Mat. Mekh. UrO RAN, 27, no. 3, 2021, 25–42 (Russian) | DOI | MR
[53] M. I. Gomoyunov, “Differential games for fractional-order systems: Hamilton–Jacobi–Bellman–Isaacs equation and optimal feedback strategies”, Mathematics, 9:14 (2021), 1667, 16 pp. | DOI
[54] M. I. Gomoyunov, On viscosity solutions of path-dependent Hamilton–Jacobi–Bellman–Isaacs equations for fractional-order systems, 2021, 24 pp., arXiv: 2109.02451
[55] M. I. Gomoyunov, “Minimax solutions of Hamilton–Jacobi equations with fractional coinvariant derivatives”, ESAIM Control Optim. Calc. Var., 28 (2022), 23, 36 pp. | DOI | MR | Zbl
[56] M. I. Gomoyunov, “On differentiability of solutions of fractional differential equations with respect to initial data”, Fract. Calc. Appl. Anal., 25:4 (2022), 1484–1506 | DOI | MR | Zbl
[57] M. I. Gomoyunov, “On optimal positional strategies inСЏfractional optimal control problems”, Mathematical optimization theory and operations research, Lecture Notes in Comput. Sci., 13930, Springer, Cham, 2023, 255–265 | DOI | MR | Zbl
[58] M. I. Gomoyunov, “On the relationship between the Pontryagin maximum principle and the Hamilton–Jacobi–Bellman equation in optimal control problems for fractional-order systems”, Differ. Equ., 59:11 (2023), 1520–1526 | DOI | MR | Zbl
[59] M. I. Gomoyunov, “Sensitivity analysis of value functional of fractional optimal control problem with application to feedback construction of near optimal controls”, Appl. Math. Optim., 88:2 (2023), 41, 49 pp. | DOI | MR | Zbl
[60] M. I. Gomoyunov, “Value functional and optimal feedback control in linear-quadratic optimal control problem for fractional-order system”, Math. Control Relat. Fields, 14:1 (2024), 215–254 | DOI | MR
[61] M. I. Gomoyunov and N. Yu. Lukoyanov, “Construction of solutions to control problems for fractional-order linear systems based on approximation models”, Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S73–S82 | DOI | MR | Zbl
[62] M. I. Gomoyunov and N. Yu. Lukoyanov, “Differential games in fractional-order systems: inequalities for directional derivatives of the value functional”, Proc. Steklov Inst. Math., 315 (2021), 65–84 | DOI | MR | Zbl
[63] M. I. Gomoyunov and N. Yu. Lukoyanov, “On linear-quadratic differential games for fractional-order systems”, Dokl. Math., 108, 1 (2023), S122-S127 | DOI | MR | Zbl
[64] M. I. Gomoyunov and N. Yu. Lukoyanov, “Optimal feedback in a linear-quadratic optimal control problem for a fractional-order system”, Differ. Equ., 59:8 (2023), 1117–1129 | DOI | MR | Zbl
[65] M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Existence of a value and a saddle point in positional differential games for neutral-type systems”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 37–48 | DOI | MR | Zbl
[66] M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Approximation of minimax solutions to Hamilton–Jacobi functional equations for time-delay systems”, Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S68–S75 | DOI | MR | Zbl
[67] M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Path-dependent Hamilton–Jacobi equations: the minimax solutions revised”, Appl. Math. Optim., 84:1 (2021), S1087–S1117 | DOI | MR | Zbl
[68] M. I. Gomoyunov and A. R. Plaksin, “On basic equation of differential games for neutral-type systems”, Mech. Solids, 54:2 (2019), 131–143 | DOI
[69] M. I. Gomoyunov and A. R. Plaksin, “Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations”, J. Funct. Anal., 285:11 (2023), 110155, 41 pp. | DOI | MR | Zbl
[70] J. K. Hale and M. A. Cruz, “Existence, uniqueness and continuous dependence for hereditary systems”, Ann. Mat. Pura Appl. (4), 85:1 (1970), 63–81 | DOI | MR | Zbl
[71] J. K. Hale and S. M. Verduyn Lunel, Introduction to functional differential equations, Appl. Math. Sci., 99, Springer-Verlag, New York, 1993, x+447 pp. | DOI | MR | Zbl
[72] R. Isaacs, Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley Sons, Inc., New York–London–Sydney, 1965, xvii+384 pp. | MR | Zbl
[73] H. Ishii, “Uniqueness of unbounded viscosity solutions of Hamilton–Jacobi equations”, Indiana Univ. Math. J., 33:5 (1984), 721–748 | DOI | MR | Zbl
[74] H. Ishii, “Viscosity solutions for a class of Hamilton–Jacobi equations in Hilbert spaces”, J. Funct. Anal., 105:2 (1992), 301–341 | DOI | MR | Zbl
[75] Shaolin Ji and Shuzhen Yang, “A note on functional derivatives on continuous paths”, Statist. Probab. Lett., 106 (2015), 176–183 | DOI | MR | Zbl
[76] G. Jumarie, “Fractional Hamilton–Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function”, J. Appl. Math. Comput., 23:1-2 (2007), 215–228 | DOI | MR | Zbl
[77] H. Kaise, “Path-dependent differential games of inf-sup type and Isaacs partial differential equations”, 54th IEEE conference on decision and control (CDC) (Osaka 2015), IEEE, 2015, 1972–1977 | DOI
[78] H. Kaise, “Convergence of discrete-time deterministic games to path-dependent Isaacs partial differential equations under quadratic growth conditions”, Appl. Math. Optim., 86:1 (2022), 13, 49 pp. | DOI | MR | Zbl
[79] H. Kaise, T. Kato, and Y. Takahashi, “Hamilton–Jacobi partial differential equations with path-dependent terminal costs under superlinear Lagrangians”, 23rd international symposium on mathematical theory of networks and systems (MTNS), Hong Kong Univ. of Science and Technology, Hong Kong, 2018, 692–699
[80] J. L. Kelley, General topology, Grad. Texts in Math., 27, Reprint of the 1955 ed., Springer-Verlag, New York–Berlin, 1975, xiv+298 pp. | MR | Zbl
[81] M. M. Khrustalev, “Necessary and sufficient optimality conditions in the form of Bellman's equation”, Soviet Math. Dokl., 19:5 (1978), 1262–1266 | MR | Zbl
[82] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Science B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl
[83] A. V. Kim, “Lyapunov's second method for systems with aftereffect”, Differ. Equ., 21 (1985), 244–249 | MR | Zbl
[84] A. V. Kim, Functional differential equations. Application of $i$-smooth calculus, Math. Appl., 479, Kluwer Acad. Publ., Dordrecht, 1999, xvi+165 pp. | DOI | MR | Zbl
[85] A. V. Kim and V. G. Pimenov, $i$-smooth analysis and numerical methods of solutions of functional differential equations, Regulyarnaya i Khaoticheskaya Dinamika, Moscow–Izhevsk, 2004, 256 pp. (Russian)
[86] R. Kipka and Yu. Ledyaev, “A generalized multidirectional mean value inequality and dynamic optimization”, Optimization, 68:7 (2019), 1365–1389 | DOI | MR | Zbl
[87] M. Kocan, P. Soravia, and A. Swiech, “On differential games for infinite-dimensional systems with nonlinear, unbounded operators”, J. Math. Anal. Appl., 211:2 (1997), 395–423 | DOI | MR | Zbl
[88] V. Kolmanovskii and A. Myshkis, Applied theory of functional differential equations, Math. Appl. (Soviet Ser.), 85, Kluwer Acad. Publ., Dordrecht, 1992, xvi+234 pp. | DOI | MR | Zbl
[89] V. N. Kolokoltsov and V. P. Maslov, “The Cauchy problem for the homogeneous Bellman equation”, Dokl. Math., 36:2 (1988), 326–330 | MR | Zbl
[90] A. N. Krasovskii and N. N. Krasovskii, Control under lack of information, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1995, xii+322 pp. | DOI | MR | Zbl
[91] N. N. Krasovskii, “On the application of the second method of Lyapunov for equations with time delays”, Prikl. Mat. Mekh., 20:3 (1956), 315–327 (Russian) | MR | Zbl
[92] N. N. Krasovskii, Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay, Stanford Univ. Press, Stanford, CA, 1963, vi+188 pp. | MR | Zbl
[93] N. N. Krasovskii, “The approximation of a problem of analytic design of controls in a system with time-lag”, J. Appl. Math. Mech., 28:4 (1964), 876–885 | DOI | MR | Zbl
[94] N. N. Krasovskiĭ, “On the problem of unifying differential games”, Soviet Math. Dokl., 17:1 (1976), 269–273 | MR | Zbl
[95] N. N. Krasovskii, “Unifuing differential games”, Tr. Inst. Mat. Mekh. UrO Akad. Nauk SSSR, 24, Institute of Mechanics and Mathematics, Ural Branch of the USSR Academy of Sciences, Sverdlovsk, 1977, 32–45 (Russian) | MR
[96] N. N. Krasovskii, Control by dynamical system. The minimum problem of a guaranteed result, Nauka, Moscow, 1985, 519 pp. (Russian) | MR | Zbl
[97] N. N. Krasovskii and N. Yu. Lukoyanov, “Equations of Hamilton–Jacobi type in hereditary systems: minimax solutions”, Proc. Steklov Inst. Math. (Suppl.), 2000, suppl. 1, , S136–S153 | MR | Zbl
[98] N. N. Krasovskiĭand Yu. S. Osipov, “Linear differential-difference games”, Soviet Math. Dokl., 12 (1971), 554–558 | MR | Zbl
[99] N. N. Krasovskii and A. I. Subbotin, Positional differential games, Nauka, Moscow, 1974, 456 pp. (Russian) | MR | Zbl
[100] N. N. Krasovskii and A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math, Springer, New York, 1988, xii+517 pp. | DOI | MR
[101] S. N. Kruzhkov, “Generalized solutions of nonlinear equations of the first order with several variables. I”, Mat. Sb., 70(112):3 (1966), 394–415 (Russian) | MR | Zbl
[102] A. V. Kryazhimskii and Yu. S. Osipov, “Differential-difference game of encounter with a functional target set”, J. Appl. Math. Mech., 37:1 (1973), 1–10 | DOI | MR | Zbl
[103] A. B. Kurzhanskii, “On the approximation of linear differential equations with lag”, Differ. Uravn., 3:12 (1967), 2094–2107 (Russian) | MR | Zbl
[104] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 1, Mechanics, 3, Pergamon Press, Oxford, 1976, xi+170 pp. | MR | Zbl
[105] Xunjing Li and Jiongmin Yong, Optimal control theory for infinite dimensional systems, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1995, xii+448 pp. | DOI | MR | Zbl
[106] Yongxin Li and Shuzhong Shi, “A generalization of Ekeland's $\epsilon$-variational principle and its Borwein–Preiss smooth variant”, J. Math. Anal. Appl., 246:1 (2000), 308–319 | DOI | MR | Zbl
[107] D. Liberzon, Calculus of variations and optimal control theory. A concise introduction, Princeton Univ. Press, Princeton, NJ, 2012, xviii+235 pp. | MR | Zbl
[108] Ping Lin and Jiongmin Yong, “Controlled singular Volterra integral equations and Pontryagin maximum principle”, SIAM J. Control Optim., 58:1 (2020), 136–164 | DOI | MR | Zbl
[109] P.-L. Lions, Generalized solutions of Hamilton–Jacobi equations, Res. Notes in Math., 69, Pitman, Boston, MA–London, 1982, iv+317 pp. | MR | Zbl
[110] P.-L. Lions and P. E. Souganidis, “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs' equations”, SIAM J. Control Optim., 23:4 (1985), 566–583 | DOI | MR | Zbl
[111] N. Yu. Lukoyanov, “A Hamilton–Jacobi type equation in control problems with hereditary information”, J. Appl. Math. Mech., 64:2 (2000), 243–253 | DOI | MR | Zbl
[112] N. Yu. Lukoyanov, “Minimax solutions of functional equations of the Hamilton–Jacobi type for hereditary systems”, Differ. Equ., 37:2 (2001), 246–256 | DOI | MR | Zbl
[113] N. Yu. Lukoyanov, “The properties of the value functional of a differential game with hereditary information”, J. Appl. Math. Mech., 65:3 (2001), 361–370 | DOI | MR | Zbl
[114] N. Lukoyanov, “Functional Hamilton–Jacobi type equations in ci-derivatives for systems with distributed delays”, Nonlinear Funct. Anal. Appl., 8:3 (2003), 365–397 | MR | Zbl
[115] N. Lukoyanov, “Functional Hamilton–Jacobi type equations with ci-derivatives in control problems with hereditary information”, Nonlinear Funct. Anal. Appl., 8:4 (2003), 535–555 | MR | Zbl
[116] N. Yu. Lukoyanov, “Strategies for aiming in the direction of invariant gradients”, J. Appl. Math. Mech., 68:4 (2004), 561–574 | DOI | MR | Zbl
[117] N. Yu. Lukoyanov, “Approximation of the Hamilton–Jacobi functional equations in systems with hereditary information”, Proceeding of the International Semonar “Control theory and theory of generalizaed soltujons of the Hamilton–Jacobi equations” (Ekaterinburg 2005), v. 1, Ural University Publishing House, Ekaterinburg, 2006, 108–115 (Russian)
[118] N. Yu. Lukoyanov, “Differential inequalities for a nonsmooth value functional in control systems with an aftereffect”, Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S103–S114 | DOI | MR | Zbl
[119] N. Yu. Lukoyanov, “On viscosity solution of functional Hamilton–Jacobi type equations for hereditary systems”, Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S190–S200 | DOI | Zbl
[120] N. Yu. Lukoyanov, “Viscosity solution of nonanticipating Hamilton–Jacobi equations”, Differ. Equ., 43:12 (2007), 1715–1723 | DOI | MR | Zbl
[121] N. Yu. Lukoyanov, “Minimax and viscosity solutions in optimization problems for hereditary systems”, Proc. Steklov Inst. Math. (Suppl.), 269, suppl. 1 (2010), S214–S225 | DOI | Zbl
[122] N. Yu. Lukoyanov, “On optimality conditions for the guaranteed result in control problems for time-delay systems”, Proc. Steklov Inst. Math. (Suppl.), 268 , suppl. 1 (2010), S175–S187 | DOI | MR | Zbl
[123] N. Yu. Lukoyanov, Hamilton–Jacobi functional equations of control problems with hereditary information, Ural Federal University, Ekaterinburg, 2011, 243 pp. (Russian)
[124] N. Yu. Lukoyanov, M. I. Gomoyunov, and A. R. Plaksin, “Hamilton–Jacobi functional equations and differential games for neutral-type systems”, Dokl. Math., 96:3 (2017), 654–657 | DOI | MR | Zbl
[125] N. Yu. Lukoyanov and A. R. Plaksin, “Finite-dimensional modelling guides in time-delay systems”, Tr. Inst. Mat. Mekh., 19, no. 1, 2013, 182–195 (Russian) | MR
[126] N. Yu. Lukoyanov and A. R. Plaksin, “Minimax solutions of Hamilton–Jacobi functional equations for neutral-type systems”, Dokl. Math., 96:2 (2017), 445–448 | DOI | MR | Zbl
[127] N. Yu. Lukoyanov and A. R. Plaksin, “Stable functionals of neutral-type dynamical systems”, Proc. Steklov Inst. Math., 304 (2019), 205–218 | DOI | MR | Zbl
[128] N. Yu. Lukoyanov and A. R. Plaksin, “On the theory of positional differential games for neutral-type systems”, Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S83–S92 | DOI | MR
[129] N. Yu. Lukoyanov and A. R. Plaksin, “Hamilton–Jacobi equations for neutral-type systems: inequalities for directional derivatives of minimax solutions”, Minimax Theory Appl., 5:2 (2020), 369–381 | MR | Zbl
[130] N. Yu. Lukoyanov and A. R. Plaksin, “Inequalities for subgradients of a value functional in differential games for time-delay systems”, Dokl. Math., 101:1 (2020), 76–79 | DOI | MR | Zbl
[131] V. I. Maksimov, “An alternative in the differential-difference game of approach–evasion with a functional target”, J. Appl. Math. Mech., 40:6 (1976), 936–943 | DOI | MR | Zbl
[132] V. I. Maksimov, “A differential guidance game for a system of neutral type with deviating argument”, Problems of dynamical control, Ural Science Center of USSR Academy of Sciences, Sverdlovsk, 1981, 33–45 (Russian) | MR | Zbl
[133] V. N. Kolokoltsov and V. P. Maslov, Idempotent analysis and its applications, Math. Appl., 401, Kluwer Acad. Publ., Dordrecht, 1997, xii+305 pp. | DOI | MR | Zbl
[134] V. P. Maslov and S. N. Samborskii, “Existence and uniqueness of solutions of the steady-state Hamilton–Jacobi and Bellman equations. A new approach”, Dokl. Math., 45:3 (1992), 682–687 | MR | Zbl
[135] A. A. Melikyan, Generalized characteristics of first order PDEs. Applications in optimal control and differential games, Birkhäuser Boston, Inc., Boston, MA, 1998, xiv+310 pp. | DOI | MR | Zbl
[136] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1993, xvi+366 pp. | MR | Zbl
[137] Yu. S. Osipov, “Differential games of systems with aftereffect”, Soviet Math. Dokl., 12:262–266 (1971) | MR | Zbl
[138] V. L. Pasikov, “An alternative in a minimax differential game for systems with aftereffect”, Soviet Math. (Iz. VUZ), 27:8 (1983), 54–61 | MR | Zbl
[139] Triet Pham and Jianfeng Zhang, “Two person zero-sum game in weak formulation and path dependent Bellman–Isaacs equation”, SIAM J. Control Optim., 52:4 (2014), 2090–2121 | DOI | MR | Zbl
[140] A. R. Plaksin, “On Hamilton-Jacobi-Isaacs-Bellman equation for neutral type systems”, Vestn. Udmurt. Univer. Mat. Makh. Compyut. Nauki, 27:2 (2017), 222–237 (Russian) | DOI | MR | Zbl
[141] A. R. Plaksin, “Minimax solution of functional Hamilton–Jacobi equations for neutral type systems”, Differ. Equ., 55:11 (2019), 1475–1484 | DOI | MR | Zbl
[142] A. Plaksin, “Minimax and viscosity solutions of Hamilton–Jacobi–Bellman equations for time-delay systems”, J. Optim. Theory Appl., 187:1 (2020), 22–42 | DOI | MR | Zbl
[143] A. R. Plaksin, “On the minimax solution of the Hamilton–Jacobi equations for neutral-type systems: the case of an inhomogeneous Hamiltonian”, Differ. Equ., 57:11 (2021), 1516–1526 | DOI | MR | Zbl
[144] A. R. Plaksin, “Viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations for time-delay systems”, SIAM J. Control Optim., 59:3 (2021), 1951–1972 | DOI | MR | Zbl
[145] A. Plaksin, “Viscosity solutions of Hamilton–Jacobi equations for neutral-type systems”, Appl. Math. Optim., 88:1 (2023), 6, 29 pp. | DOI | MR | Zbl
[146] I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Engrg., 198, Academic Press, Inc., San Diego, CA, 1999, xxiv+340 pp. | MR | Zbl
[147] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, 4th ed., Nauka, Moscow, 1983, 392 pp. ; English transl. of 1st ed. Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | Zbl | MR | Zbl
[148] M. Ramaswamy and A. J. Shaiju, “Construction of approximate saddle-point strategies for differential games in a Hilbert space”, J. Optim. Theory Appl., 141:2 (2009), 349–370 | DOI | MR | Zbl
[149] A. Razminia, M. Asadizadehshiraz, and D. F. M. Torres, “Fractional order version of the Hamilton–Jacobi–Bellman equation”, J. Comput. Nonlinear Dynam., 14:1 (2018), 011005, 6 pp. | DOI
[150] Yu. M. Repin, “On the approximate replacement of systems with lag by ordinary dynamical systems”, J. Appl. Math. Mech., 29:2 (1965), 254–264 | DOI | MR | Zbl
[151] I. V. Rublev, “The relationship between two approaches to a generalized solution of the Hamilton–Jacobi equation”, Differ. Equ., 38:6 (2002), 865–873 | DOI | MR | Zbl
[152] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach Sci. Publ., Yverdon, 1993, xxxvi+976 pp. | MR | Zbl
[153] B. Sendov, Hausdorff approximations, Math. Appl. (East European Ser.), 50, Kluwer Acad. Publ., Dordrecht, 1990, xx+364 pp. | MR | Zbl
[154] S. N. Shimanov, “On the stability in the critical case of a zero root for systems with time lag”, J. Appl. Math. Mech., 24:3 (1961), 653–668 | DOI | MR | Zbl
[155] S. N. Shimanov, “On the theory of linear differential equations with after-effect”, Differ. Equ., 1:1 (1965), 76–86 | MR | Zbl
[156] H. M. Soner, “On the Hamilton–Jacobi–Bellman equations in Banach spaces”, J. Optim. Theory Appl., 57:3 (1988), 429–437 | DOI | MR | Zbl
[157] P. E. Souganidis, “Existence of viscosity solutions of Hamilton–Jacobi equations”, J. Differential Equations, 56:3 (1985), 345–390 | DOI | MR | Zbl
[158] C. Stegall, “Optimization of functions on certain subsets of Banach spaces”, Math. Ann., 236:2 (1978), 171–176 | DOI | MR | Zbl
[159] A. I. Subbotin, “A generalization of the basic equation of the theory of differential games”, Soviet Math. Dokl., 22:2 (1980), 358–362 | MR | Zbl
[160] A. I. Subbotin, Minimax inequalities and Hamilton-Jacobi equations, Nauka, Moscow, 1991, 216 pp. | MR | Zbl
[161] A. I. Subbotin, “On a property of the subdifferential”, Math. USSR-Sb., 74:1 (1993), 63–78 | DOI | MR | Zbl
[162] A. I. Subbotin, Generalized solutions of first order PDEs. The dynamical optimization perspective, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1995, xii+312 pp. | DOI | MR | Zbl
[163] A. I. Sibbotin and A. G. Chentsov, Guarantee optimization in control problems, Nauka, Moscow, 1981, 288 pp. (Russian) | MR | Zbl
[164] A. I. Subbotin and N. N. Subbotina, “The optimum result function in a control problem”, Soviet Math. Dokl., 26:2 (1982), 336–340 | MR | Zbl
[165] A. I. Subbotin and N. N. Subbotina, “The basis for the method of dynamic programming in optimal control problems”, Engrg. Cybernetics, 21:2 (1983), 16–23 | MR
[166] A. I. Subbotin and A. M. Tarasev, “Stability properties of the value function of a differential game and viscosity solutions of Hamilton–Jacobi equations”, Problems Control Inform. Theory, 15:6 (1986), 451–463 | MR | Zbl
[167] N. N. Subbotina, “Unified optimality conditions in control problems”, Tr. Inst. Mat. Mekh., 1, 1992, 147–159 | MR | Zbl
[168] N. N. Subbotina, “The method of characteristics for Hamilton–Jacobi equations and applications to dynamical optimization”, J. Math. Sci. (N. Y.), 135:3 (2006), 2955–3091 | DOI | MR | Zbl
[169] A. Świȩch, “Sub- and super-optimality principles and construction of almost optimal strategies for differential games in Hilbert spaces”, Advances in dynamic games, Ann. Internat. Soc. Dynam. Games, 11, Birkhäuser/Springer, New York, 2010, 149–163 | DOI | MR | Zbl
[170] Shanjian Tang and Fu Zhang, “Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations”, Discrete Contin. Dyn. Syst., 35:11 (2015), 5521–5553 | DOI | MR | Zbl
[171] A. M. Taras'yev, V. N. Ushakov, and A. P. Khripunov, “On a computational algorithm for solving game control problems”, J. Appl. Math. Mech., 51 (1987), 2 | DOI | MR | Zbl
[172] D. Tataru, “Viscosity solutions of Hamilton–Jacobi equations with unbounded nonlinear terms”, J. Math. Anal. Appl., 163:2 (1992), 345–392 | DOI | MR | Zbl
[173] Hung Vinh Tran, Hamilton–Jacobi equations: theory and applications, Grad. Stud. Math., 213, Amer. Math. Soc., Providence, RI, 2021, xiv+322 pp. | DOI | MR
[174] V. N. Ushakov and A. A. Uspenskii, “On a supplement to the stability property in differential games”, Proc. Steklov Inst. Math., 271 (2010), 286–305 | DOI | MR | Zbl
[175] P. R. Wolenski, “Hamilton–Jacobi theory for hereditary control problems”, Nonlinear Anal., 22:7 (1994), 875–894 | DOI | MR | Zbl
[176] Jiongmin Yong, Differential games. A concise introduction, World Sci. Publ., Hackensack, NJ, 2015, xiv+322 pp. | DOI | MR | Zbl
[177] M. I. Zelikin, Optimal control and variational calculus, 2nd revised and augmented ed., Editorial URSS, Moscow, 2004, 160 pp. (Russian)
[178] Jianjun Zhou, A class of delay optimal control problems and viscosity solutions to associated Hamilton–Jacobi–Bellman equations, 2015, 21 pp., arXiv: 1507.04112
[179] Jianjun Zhou, “A class of infinite-horizon stochastic delay optimal control problems and a viscosity solution to the associated HJB equation”, ESAIM Control Optim. Calc. Var., 24:2 (2018), 639–676 | DOI | MR | Zbl
[180] Jianjun Zhou, Viscosity solutions to first order path-dependent HJB equations, 2020, 25 pp., arXiv: 2004.02095
[181] Jianjun Zhou, Viscosity solutions to second order elliptic Hamilton–Jacobi–Bellman equation with infinite delay, 2021, 39 pp., arXiv: 2112.13363
[182] Jianjun Zhou, “A notion of viscosity solutions to second-order Hamilton–Jacobi–Bellman equations with delays”, Internat. J. Control, 95:10 (2022), 2611–2631 | DOI | MR | Zbl
[183] Jianjun Zhou, “Viscosity solutions to second order path-dependent Hamilton–Jacobi–Bellman equations and applications”, Ann. Appl. Probab., 33:6B (2023), 5564–5612 | DOI | MR | Zbl