On extensibility and qualitative properties of solutions to Riccati's equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 2, pp. 189-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Riccati's equation on the real axis with continuous coefficients and non-negative discriminant of the right-hand side. We study the extensibility of its solutions to unbounded intervals. We obtain asymptotic formulae for its solutions in their dependence on the initial values and the properties of the functions representing roots of the right-hand side of the equation. We obtain results on the asymptotical behaviour of solutions defined near $\pm\infty$. We study the structure of the set of bounded solutions in the case when the roots of the right-hand side of the equation are $C^1$-functions which are different on the whole of their domain and tend monotonically to some limits as $x\to\pm\infty$. We extend, improve, or refine some well-known results. Bibliography: 47 titles.
Keywords: non-negative discriminant, continuous coefficients, extensibility, qualitative properties, asymptotic properties.
Mots-clés : Riccati's equation
@article{RM_2024_79_2_a0,
     author = {I. V. Astashova and V. A. Nikishov},
     title = {On extensibility and qualitative properties of solutions to {Riccati's} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {189--227},
     year = {2024},
     volume = {79},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_2_a0/}
}
TY  - JOUR
AU  - I. V. Astashova
AU  - V. A. Nikishov
TI  - On extensibility and qualitative properties of solutions to Riccati's equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 189
EP  - 227
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_2_a0/
LA  - en
ID  - RM_2024_79_2_a0
ER  - 
%0 Journal Article
%A I. V. Astashova
%A V. A. Nikishov
%T On extensibility and qualitative properties of solutions to Riccati's equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 189-227
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2024_79_2_a0/
%G en
%F RM_2024_79_2_a0
I. V. Astashova; V. A. Nikishov. On extensibility and qualitative properties of solutions to Riccati's equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 2, pp. 189-227. http://geodesic.mathdoc.fr/item/RM_2024_79_2_a0/

[1] I. G. Fikhtengol'ts, “Elements of the theory of gravitational waves”, Theoret. and Math. Phys., 79:1 (1989), 445–448 | DOI | MR

[2] A. V. Lysukhina, Equivalence of some quantum mechanical models, Bachelor Thesis, Faculty of Physics, Moscow State University, Moscow, 2017 (Russian)

[3] E. A. Lukashev, V. V. Palin, E. V. Radkevich, and N. N. Yakovlev, “Nonclassical regularization of the multicomponent Euler system”, J. Math. Sci. (N. Y.), 196:3 (2014), 322–345 | DOI | MR | Zbl

[4] J. Da Fonseca, M. Grasselli, and C. Tebaldi, “A multifactor volatility Heston model”, Quant. Finance, 8:6 (2008), 591–604 | DOI | MR | Zbl

[5] D. A. Smorodinov, “Parametrization of the regulator of multicontour stabiliazation of the isolation diameter and the capacitance of one meter of twisted pair cabling”, Zh. Nauchn. Publikatsii Aspirantov i Doktorantov, 4 (2013) (Russian) http://jurnal.org/articles/2013/inf3.html

[6] I. I. Artobolevskii and V. S. Loshchinin, Dynamics of machine assemblies in marginal motion regimes, Nauka, Moscow, 1977, 305 pp. (Russian)

[7] N. A. Kil'chevskii, A course of theoretical mechanics, v. 1, Kinematics, statics, point mass dynamics, Nauka, Moscow, 1972, 75 pp. (Russian) | Zbl

[8] M. I. Zelikin, Control theory and optimization, v. I, Encyclopaedia Math. Sci., 86, Homogeneous spaces and the Riccati equation in the calculus of variations, Springer-Verlag, Berlin, 2000, xii+284 pp. | DOI | MR | Zbl | Zbl

[9] N. N. Luzin, “On the method of approximate integration of academician S. A. Chaplygin”, Uspekhi Mat. Nauk, 6:6(46) (1951), 3–27 (Russian) | MR | Zbl

[10] S. A. Chaplygin, A new method of approximate integration of differential equations, Gostekhizdat, Moscow–Leningrad, 1950, 102 pp. (Russian)

[11] A. Glutsuk, “On germs of constriction curves in model of overdamped Josephson junction, dynamical isomonodromic foliation and Painlevé 3 equation”, Mosc. Math. J., 23:4 (2023), 479–513 | DOI

[12] Z. Došlá, P. Hasil, S. Matucci, and M. Veselý, “Euler type linear and half-linear differential equations and their non-oscillation in the critical oscillation case”, J. Inequal. Appl., 2019, 189, 30 pp. | DOI | MR | Zbl

[13] J. Bernoulli, “Modus generalis construendi omnes æquationes differentiales primi gradus”, Acta Erud., 1694, 435–437

[14] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl

[15] J. F. Riccati, “Animadversiones in æquationes differentiales secundi gradus”, Acta Erud. Suppl., 8 (1724), 66–73

[16] D. Bernoulli, “Notata in J. Riccati ‘Animadversiones in æquationes differentiales secundi gradus’ ”, Acta Erud. Suppl., 8 (1724), 73–75

[17] V. V. Stepanov, A course of differential equations, 8th ed., GIFML, Moscow, 1959, 468 pp. (Russian) ; German transl of 6th ed. W. W. Stepanow, Lehrbuch der Differentialgleichungen, Hochschulbücher für Math., 20, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956, ix+470 pp. | Zbl | MR | Zbl

[18] J. Liouville, “Remarques nouvelles sur l'équation de Riccati”, J. Math. Pures Appl., 1841, 1–13

[19] L. Euler, “De integratione aequationum differentialium”, Nov. Comm. Acad. Sci. Petrop., VIII, (1760–1761) (1763), 3–63

[20] L. Euler, “De resolutione aequationis $dy+ayy\,dx=bx^m\,dx$”, Nov. Comm. Acad. Sci. Petrop., IX, (1762–1763) (1764), 154–169

[21] A. Cayley, “On Riccati's equation”, Philos. Mag. (4), XXXVI:244 (1868), 348–351 ; The collected mathematical papers, v. VII, Cambridge Univ. Press, Cambridge, 1894, 9–12 | DOI | Zbl | Zbl

[22] R. Murphy, “On the general properties of definite integrals”, Trans. Camb. Phil. Soc., III (1830), 429–443

[23] E. Weyr, Zur Integration der Differentialgleichungen erster Ordnung, Abh. Königl. böhm. Ges. Wiss. (6), 6, Prag, Dr. Ed. Gregr, 1875, 44 pp. | Zbl

[24] É. Picard, “Application de la théorie des complexes linéaires à l'étude des surfaces et des courbes gauches”, Ann. Sci. École Norm. Sup. (2), 6 (1877), 329–366 | MR | Zbl

[25] R. Redheffer, “On solutions of Riccati's equation as functions of the initial values”, J. Rational Mech. Anal., 5:5 (1956), 835–848 | DOI | MR | Zbl

[26] G. McCarty, Jr., “Solutions to Riccati's problem as functions of initial values”, J. Math. Mech., 9:6 (1960), 919–925 | DOI | MR | Zbl

[27] V. A. Pliss, Nonlocal problems of the theory of oscillations, Academic Press, New York–London, 1966, xii+306 pp. | MR | Zbl

[28] I. V. Astashova, “Remark on continuous dependence of solutions to the Riccati equation on its righthand side”, International workshop QUALITDE – 2021, Abstracts (Tbilisi 2021), A. Razmadze Math. Inst. of I. Javakhishvili Tbilisi State Univ., Tbilisi, 14–17 https://rmi.tsu.ge/eng/QUALITDE-2021/Abstracts_workshop_2021.pdf

[29] A. F. Filippov, Introduction to the theory of differential equations, URSS, Moscow, 2004, 239 pp. (Russian)

[30] W. T. Reid, Riccati differential equations, Math. Sci. Eng., 86, Academic Press, New York–London, 1972, x+216 pp. | MR | Zbl

[31] M. Bertolino, “Non-stabilité des courbes de points stationnaires des solutions des équations différentielles”, (Serbo-Croatian), Mat. Vesnik, 2(15)(30):3 (1978), 243–253 | MR | Zbl

[32] M. Bertolino, “Équations différentielles aux coefficients infinis”, Mat. Vesnik, 4(17)(32):2 (1980), 150–155 | MR | Zbl

[33] M. Bertolino, “Asymptotes verticales des solutions des équations différentielles”, Mat. Vesnik, 5(18)(33):2 (1981), 139–144 | MR | Zbl

[34] A. I. Egorov, Riccati's equation, Fizmatlit, Moscow, 2001, 328 pp. (Russian) | Zbl

[35] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, v. 1, Mathematik und ihre Anwendungen in Physik und Technik. Reihe A, 18, Gewöhnliche Differentialgleichungen, 6. Aufl., Akademische Verlagsgesellschaft, Geest Portig K.-G., Leipzig, 1959, xxvi+666 pp. | MR | Zbl

[36] N. M. Kovalevskaya, On some cases of integrability of a general Riccati equaton, 2006, 4 pp., arXiv: math/0604243v1

[37] N. M. Kovalvskaya, “Integrability of the general Riccati equation”, Zh. Nauchn. Publikatsii Aspirantov i Doktorantov, 5 (2011) (Russian) http://jurnal.org/articles/2011/mat3.html

[38] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | Zbl

[39] V. V. Palin and E. V. Radkevich, “Behavior of stabilizing solutions of the Riccati equation”, J. Math. Sci. (N.Y.), 234:4 (2018), 455–469 | DOI | MR | Zbl

[40] M. Bertolino, “Sur une synthèse pratique de deux méthodes qualitatives d'étude des équations différentielles”, Mat. Vesnik, 13(28):1 (1976), 9–19 | MR | Zbl

[41] I. Merovci, “Sur quelques propriétés des solutions de l'équation $y'=(y-\alpha_1)(y-\alpha_2)$”, (Serbo-Croatian), Mat. Vesnik, 2(15)(30):3 (1978), 235–242 | MR

[42] N. P. Erugin, Reader for a general course in differential equations, 3d revised and augented ed., Nauka i technika, Minsk, 1979, 743 pp. (Russian) | MR | Zbl

[43] M. Bertolino, “Tuyaux étagés de l'approximation des équations différentielles”, Publ. Inst. Math. (Beograd) (N. S.), 12(26) (1971), 5–10 | MR | Zbl

[44] I. V. Astashova and V. A. Nikishov, “On extensibility and asymptotics of solutions to the Riccati equation with real roots of its right part”, International workshop QUALITDE – 2022, Reports of QUALITDE (Tbilisi 2022), v. 1, A. Razmadze Math. Inst. of I. Javakhishvili Tbilisi State Univ., Tbilisi, 27–30 https://rmi.tsu.ge/eng/QUALITDE-2022/Reports_workshop_2022.pdf

[45] I. V. Astashova and V. A. Nikishov, “On qualitative properties of solutions of Riccati's equation”, Current methods in the theory of boundary value problems., Voronezh Spring Mathematical School (3–9 May 2023), Publishing House of Voronezh State University, Voronezh, 2023, 50–53 (Russian) https://vvmsh.math-vsu.ru/files/vvmsh2023.pdf

[46] I. V. Astashova and V. A. Nikishov, “Extensibility and asymptotics of solutions of Riccati's equation with real roots of the right-hand side”, Differ. Uravn., 59:6 (2023), 856–858 (Russian)

[47] P. Hartman, “On an ordinary differential equation involving a convex function”, Trans. Amer. Math. Soc., 146 (1969), 179–202 | DOI | MR | Zbl