Bitopological models of intuitionistic epistemic logic
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 1, pp. 179-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2024_79_1_a5,
     author = {A. A. Onoprienko},
     title = {Bitopological models of intuitionistic epistemic logic},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {179--181},
     year = {2024},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_1_a5/}
}
TY  - JOUR
AU  - A. A. Onoprienko
TI  - Bitopological models of intuitionistic epistemic logic
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 179
EP  - 181
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_1_a5/
LA  - en
ID  - RM_2024_79_1_a5
ER  - 
%0 Journal Article
%A A. A. Onoprienko
%T Bitopological models of intuitionistic epistemic logic
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 179-181
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2024_79_1_a5/
%G en
%F RM_2024_79_1_a5
A. A. Onoprienko. Bitopological models of intuitionistic epistemic logic. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 1, pp. 179-181. http://geodesic.mathdoc.fr/item/RM_2024_79_1_a5/

[1] S. Artemov and T. Protopopescu, Intuitionistic epistemic logic, vers. 2, 2014, 41 pp., arXiv: 1406.1582v2

[2] S. Artemov and T. Protopopescu, Rev. Symb. Log., 9:2 (2016), 266–298 | DOI | MR | Zbl

[3] H. B. Curry, A theory of formal deducibility, Notre Dame Math. Lectures, 6, Univ. Notre Dame, Notre Dame, IN, 1950, ix+126 pp. | MR | Zbl

[4] A. G. Dragalin, Mathematical intuitionism. Introduction to proof theory, Transl. Math. Monogr., 67, Amer. Math. Soc., Providence, RI, 1988, x+228 pp. | DOI | MR | Zbl

[5] M. Fairtlough and M. Mendler, Inform. and Comput., 137:1 (1997), 1–33 | DOI | MR | Zbl

[6] R. I. Goldblatt, Z. Math. Logik Grundlagen Math., 27:31-35 (1981), 495–529 | DOI | MR | Zbl

[7] V. N. Krupskii, Tenth Smirnov Readings (Moscow 2017), Sovremennye Tetradi, Moscow, 2017, 30–31

[8] D. S. Macnab, Algebra Universalis, 12:1 (1981), 5–29 | DOI | MR | Zbl

[9] G. Massas, Possibility spaces, Q-completions and Rasiowa–Sikorski lemmas for non-classical logics, MSc in Logic thesis, ILLC, Amsterdam, 2016, 122 pp. https://eprints.illc.uva.nl/id/eprint/1522/1/MoL-2016-23.text.pdf

[10] S. A. Melikhov, A Galois connection between classical and intuitionistic logics, I. Syntax , 2022 (v1 – 2013), 47 pp.; II. Semantics, 2022 (v1 – 2015), 40 pp., arXiv: 1312.25751504.03379

[11] A. A. Onoprienko, Moscow Univ. Math. Bull., 77:5 (2022), 236–241 | DOI | MR | Zbl

[12] A. A. Onoprienko, “The predicate version of the joint logic of problems and propositions”, Sb. Math., 213:7 (2022), 981–1003 | DOI | MR | Zbl

[13] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Monogr. Mat., 41, Państwowe Wydawnictwo Naukowe, Warsaw, 1963, 522 pp. | MR | Zbl