Curvature and isometries of the Lorentzian Lobachevsky plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 1, pp. 173-175
@article{RM_2024_79_1_a3,
author = {Yu. L. Sachkov},
title = {Curvature and isometries of the {Lorentzian} {Lobachevsky} plane},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {173--175},
year = {2024},
volume = {79},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_1_a3/}
}
Yu. L. Sachkov. Curvature and isometries of the Lorentzian Lobachevsky plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 1, pp. 173-175. http://geodesic.mathdoc.fr/item/RM_2024_79_1_a3/
[1] R. M. Wald, General relativity, Univ. Chicago Press, Chicago, IL, 1984, xiii+491 pp. | DOI | MR | Zbl
[2] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian geometry, Monogr. Textbooks Pure Appl. Math., 202, 2nd ed., Marcel Dekker, Inc., New York, 1996, xiv+635 pp. | MR | Zbl
[3] Yu. L. Sachkov, Math. Notes, 114:1 (2023), 127–130 | DOI | MR | Zbl
[4] J. A. Wolf, Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011, xviii+424 pp. | MR | Zbl
[5] B. O'Neill, Semi-Riemannian geometry. With applications to relativity, Pure Appl. Math., 103, Academic Press, Inc., New York, 1983, xiii+468 pp. | MR | Zbl