Besov spaces in operator theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 1, pp. 1-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The survey is devoted to diverse applications of Besov classes in operator theory. It is illustrated how Besov classes are used to describe Hankel operators of Schatten–von Neumann classes; various applications of this description are considered. Next, we discuss the role of Besov classes in norm estimates of polynomials of power bounded operators on Hilbert space and related estimates of Hankel matrices in tensor products of the spaces $\ell^1$ and $\ell^\infty$. An essential part of the survey is devoted to the role of Besov spaces in various problems of perturbation theory, in studies of the behaviour of functions of a single operator or a collection of operators under their perturbation. Bibliography: 107 titles.
Keywords: Hankel operators, Schatten–von Neumann classes, power bounded operators, projective tensor products, injective tensor products, perturbations of linear operators, self-adjoint operators, double operator integrals, triple operator integrals.
Mots-clés : Besov spaces, Schur multipliers
@article{RM_2024_79_1_a0,
     author = {V. V. Peller},
     title = {Besov spaces in operator theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--52},
     year = {2024},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_1_a0/}
}
TY  - JOUR
AU  - V. V. Peller
TI  - Besov spaces in operator theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 1
EP  - 52
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_1_a0/
LA  - en
ID  - RM_2024_79_1_a0
ER  - 
%0 Journal Article
%A V. V. Peller
%T Besov spaces in operator theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 1-52
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2024_79_1_a0/
%G en
%F RM_2024_79_1_a0
V. V. Peller. Besov spaces in operator theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 1, pp. 1-52. http://geodesic.mathdoc.fr/item/RM_2024_79_1_a0/

[1] V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem”, Math. USSR-Sb., 15:1 (1971), 31–73 | DOI | MR | Zbl

[2] V. M. Adamjan and H. Neidhardt, “On the summability of the spectral shift function for pair of contractions and dissipative operators”, J. Operator Theory, 24:1 (1990), 187–205 | MR | Zbl

[3] A. B. Aleksandrov, F. L. Nazarov, and V. V. Peller, “Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals”, Adv. Math., 295 (2016), 1–52 | DOI | MR | Zbl

[4] A. B. Aleksandrov and V. V. Peller, “Operator Hölder–Zygmund functions”, Adv. Math., 224:3 (2010), 910–966 | DOI | MR | Zbl

[5] A. B. Aleksandrov and V. V. Peller, “Functions of operators under perturbations of class $\mathbf{S}_p$”, J. Funct. Anal., 258:11 (2010), 3675–3724 | DOI | MR | Zbl

[6] A. B. Aleksandrov and V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59:4 (2010), 1451–1490 | DOI | MR | Zbl

[7] A. B. Aleksandrov and V. V. Peller, “Trace formulae for perturbations of class $S_m$”, J. Spectr. Theory, 1:1 (2011), 1–26 | DOI | MR | Zbl

[8] A. B. Aleksandrov and V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238 | DOI | MR | Zbl

[9] A. B. Aleksandrov and V. V. Peller, “Krein's trace formula for unitary operators and operator Lipschitz functions”, Funct. Anal. Appl., 50:3 (2016), 167–175 | DOI | MR | Zbl

[10] A. B. Aleksandrov and V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702 | DOI | MR | Zbl

[11] A. B. Aleksandrov and V. V. Peller, “Functions of almost commuting operators and an extension of the Helton–Howe trace formula”, J. Funct. Anal., 271:11 (2016), 3300–3322 | DOI | MR | Zbl

[12] A. B. Aleksandrov and V. V. Peller, “Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals”, Bull. Lond. Math. Soc., 49:3 (2017), 463–479 | DOI | MR | Zbl

[13] A. B. Aleksandrov and V. V. Peller, “Functions of perturbed commuting dissipative operators”, Math. Nachr., 295:6 (2022), 1042–1062 | DOI | MR | Zbl

[14] A. B. Aleksandrov and V. V. Peller, “Functions of perturbed pairs of noncommutative dissipative operators”, St. Petersburg Math. J., 34:3 (2023), 379–392 | DOI | MR | Zbl

[15] A. B. Aleksandrov and V. V. Peller, “Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation”, Dokl. Math., 106:3 (2022), 407–411 | DOI | MR | Zbl

[16] A. B. Aleksandrov and V. V. Peller, “Functions of perturbed noncommuting unbounded self-adjoint operators”, St. Petersburg Math. J., 34:6 (2023), 913–927 | DOI

[17] A. B. Aleksandrov, V. V. Peller, D. S. Potapov, and F. A. Sukochev, “Functions of normal operators under perturbations”, Adv. Math., 226:6 (2011), 5216–5251 | DOI | MR | Zbl

[18] J. M. Anderson, K. F. Barth, and D. A. Brannan, “Research problems in complex analysis”, Bull. Lond. Math. Soc., 9:2 (1977), 129–162 | DOI | MR | Zbl

[19] N. A. Azamov, A. L. Carey, P. G. Dodds, and F. A. Sukochev, “Operator integrals, spectral shift and spectral flow”, Canad. J. Math., 61:2 (2009), 241–263 | DOI | MR | Zbl

[20] Ch. Batty, A. Gomilko, and Yu. Tomilov, “The theory of Besov functional calculus: developments and applications to semigroups”, J. Funct. Anal., 281:6 (2021), 109089, 60 pp. | DOI | MR | Zbl

[21] G. Bennett, “Schur multipliers”, Duke Math. J., 44:3 (1977), 603–639 | DOI | MR | Zbl

[22] S. N. Bernstein, “A generalization of an inequality of S. B. Stečkin to entire functions of finite degree”, Dokl. Akad. Nauk SSSR, 60 (1948), 1487–1490 (Russian) | MR | Zbl

[23] O. V. Besov, “On some families of functional spaces. Imbedding and continuation theorems”, Dokl. Akad. Nauk SSSR, 126:6 (1959), 1163–1165 (Russian) | MR | Zbl

[24] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral representations of functions and imbedding theorems, v. I, II, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | MR | Zbl

[25] M. Sh. Birman and M. Z. Solomyak, “Double Stieltjes operator integrals”, Spectral Theory and Wave Processes, Probl. Mat. Fiz., 1, Izdat. Leningrad. Univ., Leningrad, 1966, 33–67 (Russian) | MR | Zbl

[26] M. Sh. Birman and M. Z. Solomyak, “Double Stieltjes operator integrals. II”, Spectral Theory and Diffraction Problems, Probl. Mat. Fiz., 2, Izdat. Leningrad. Univ., Leningrad, 1967, 26–60 (Russian) | MR | Zbl

[27] M. Sh. Birman and M. Z. Solomyak, “Double Stieltjes operator integrals. III: Limit under the integral sign”, Function Theory. Spectral Theory. Wave Propagation, Probl. Mat. Fiz., 6, Izdat. Leningrad. Univ., Leningrad, 1973, 27–53 (Russian) | MR | Zbl

[28] M. S. Birman and M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | DOI | MR | Zbl

[29] R. W. Carey and J. D. Pincus, “Mosaics, principal functions and mean motion in von Neumann algebras”, Acta Math., 138:3-4 (1977), 153–218 | DOI | MR | Zbl

[30] Yu. L. Daleckii and S. G. Krein, “Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations”, Trudy Sem. Funkcional. Anal., 1, Voronezh. Gos. Univ., Voronezh, 1956, 81–105 (Russian) | MR | Zbl

[31] P. P. B. Eggermont and Y. J. Leung, “On a factorization problem for convergent sequences and on Hankel forms in bounded sequences”, Proc. Amer. Math. Soc., 96:2 (1986), 269–274 | DOI | MR | Zbl

[32] Ju. B. Farforovskaja, “The connection of the Kantorovich-Rubinstein metric for spectral resolutions of selfadjoint operators with functions of operators”, Vestn. Leningr. Univ., Ser. Mat. Mekh. Astron., 23:19 (1968), 94–97 (Russian) | MR | Zbl

[33] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | Zbl

[34] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | Zbl

[35] A. Grothendieck, “Résumé de la théorie métrique des produits tensoriels topologiques”, Bol. Soc. Mat. São Paulo, 8 (1953), 1–79 | MR | Zbl

[36] M. Haase, “Transference principles for semigroups and a theorem of Peller”, J. Funct. Anal., 261:10 (2011), 2959–2998 | DOI | MR | Zbl

[37] J. W. Helton and R. E. Howe, “Integral operators: commutators, traces, index, and homology”, Proceedings of a conference on operator theory (Dalhousie Univ., Halifax, NS 1973), Lecture Notes in Math., 345, Springer-Verlag, Berlin–New York, 1973, 141–209 | DOI | MR | Zbl

[38] I. A. Ibragimov and V. N. Solev, “2.3. Some analytic problems arising in the theory of stochastic processes”, J. Soviet Math., 26:5 (1984), 2133–2134 | DOI

[39] I. A. Ibragimov and V. N. Solev, “A condition for the regularity of a stationary Gaussian sequence”, Semin. Math., 12, V. A. Steklov Math. Inst., Leningrad, 1971, 54–60 | MR | Zbl

[40] K. Juschenko, I. G. Todorov, and L. Turowska, “Multidimensional operator multipliers”, Trans. Amer. Math. Soc., 361:9 (2009), 4683–4720 | DOI | MR | Zbl

[41] E. Kissin and V. S. Shulman, “On a problem of J. P. Williams”, Proc. Amer. Math. Soc., 130:12 (2002), 3605–3608 | DOI | MR | Zbl

[42] E. Kissin and V. S. Shulman, “Classes of operator-smooth functions. II. Operator-differentiable functions”, Integral Equations Operator Theory, 49:2 (2004), 165–210 | DOI | MR | Zbl

[43] E. Kissin and V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions”, Proc. Edinb. Math. Soc. (2), 48:1 (2005), 151–173 | DOI | MR | Zbl

[44] E. Kissin and V. S. Shulman, “On fully operator Lipschitz functions”, J. Funct. Anal., 253:2 (2007), 711–728 | DOI | MR | Zbl

[45] L. S. Koplienko, “Trace formula for nontrace-class perturbations”, Siberian Math. J., 25:5 (1984), 735–743 | DOI | MR | Zbl

[46] M. G. Krein, “On the trace formula in perturbation theory”, Mat. Sb., 33(75):3 (1953), 597–626 (Russian) | MR | Zbl

[47] M. G. Krejn, “Perturbation determinants and a formula for the traces of unitary and selfadjoint operators”, Soviet Math. Dokl., 3 (1962), 707–710 | MR | Zbl

[48] M. G. Krein, “Certain new Banach algebras and theorems of the type of the Wiener-Lévy theorems for series and Fourier integrals”, Mat. Issled., 1:1 (1966), 82–109 (Russian) | MR

[49] M. G. Kreĭn, “Perturbation determinants and a trace formula for some classes of pairs of operators”, J. Operator Theory, 17:1 (1987), 129–187 | MR | Zbl

[50] L. Kronecker, “Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen”, Monastber. Königl. Preuss. Akad. Wiss. Berlin, 1881, 535–600 | Zbl

[51] P. Koosis, Introduction to $H_p$ spaces, With an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980, xv+376 pp. | MR | Zbl

[52] S. Kwapień and A. Pełczyński, On two problems of S. Mazur from the Scottish book, Lecture at the colloquium dedicated to the memory of Stanisław Mazur (Warsaw Univ. 1985), unpublished

[53] H. Langer, “Eine Erweiterung der Spurformel der Störungstheorie”, Math. Nachr., 30:1-2 (1965), 123–135 | DOI | MR | Zbl

[54] A. Lebow, “A power-bounded operator that is not polynomially bounded”, Michigan Math. J., 15:4 (1968), 397–399 | DOI | MR | Zbl

[55] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | DOI | MR | Zbl

[56] I. M. Lifshits, “On a problem of the theory of perturbations connected with quantum statistics”, Uspekhi Mat. Nauk, 7:1(47) (1952), 171–180 (Russian) | MR | Zbl

[57] M. Malamud and H. Neidhardt, “Trace formulas for additive and non-additive perturbations”, Adv. Math., 274 (2015), 736–832 | DOI | MR | Zbl

[58] M. M. Malamud, H. Neidhardt, and V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funct. Anal. Appl., 51:3 (2017), 185–203 | DOI | MR | Zbl

[59] M. M. Malamud, H. Neidhardt, and V. V. Peller, “Absolute continuity of spectral shift”, J. Funct. Anal., 276:5 (2019), 1575–1621 | DOI | MR | Zbl

[60] R. D. Mauldin, The Scottish Book. Mathematics from the Scottish Café with selected problems from the new Scottish Book, 2nd ed., Birkhäuser/Springer, Cham, 2015, xvii+322 pp. | DOI | MR | Zbl

[61] E. McDonald and F. Sukochev, “Lipschitz estimates in quasi-Banach Schatten ideals”, Math. Ann., 383:1-2 (2022), 571–619 | DOI | MR | Zbl

[62] F. L. Nazarov and V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266:8 (2014), 5398–5428 | DOI | MR | Zbl

[63] H. Neidhardt, “Spectral shift function and Hilbert–Schmidt perturbation: extensions of some work of L. S. Koplienko”, Math. Nachr., 138 (1988), 7–25 | DOI | MR | Zbl

[64] L. N. Nikol'skaya and Yu. B. Farforovskaya, “Hölder functions are operator-Hölder”, St. Petersburg Math. J., 22:4 (2011), 657–668 | DOI | MR | Zbl

[65] N. K. Nikolski, Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002, xiv+461 pp. | MR | Zbl

[66] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | Zbl

[67] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., 1, Math. Department, Duke Univ., Durham, NC, 1976, vi+305 pp. | MR | Zbl

[68] A. A. Pekarskiĭ, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18 | DOI | MR | Zbl

[69] A. Pełczyński and F. Sukochev, “Some remarks on Toeplitz multipliers and Hankel matrices”, Studia Math., 175:2 (2006), 175–204 | DOI | MR | Zbl

[70] V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl

[71] V. V. Peller, “Estimates of functions of power bounded operators on Hilbert spaces”, J. Operator Theory, 7:2 (1982), 341–372 | MR | Zbl

[72] V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494 | DOI | MR | Zbl

[73] V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123 | DOI | MR | Zbl

[74] V. V. Peller, “For which $f$ does $A-B\in \mathbf{S}_{p}$ imply that $f(A)-f(B)\in \mathbf{S}_{p}$?”, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest 1985), Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987, 289–294 | MR | Zbl

[75] V. V. Peller, “Wiener–Hopf operators on a finite interval and Schatten–von Neumann classes”, Proc. Amer. Math. Soc., 104:2 (1988), 479–486 | DOI | MR | Zbl

[76] V. V. Peller, “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., 122, Marcel Dekker, Inc., New York, 1990, 529–544 | MR | Zbl

[77] V. V. Peller, “Functional calculus for a pair of almost commuting selfadjoint operators”, J. Funct. Anal., 112:2 (1993), 325–345 | DOI | MR | Zbl

[78] V. V. Peller, “An extension of the Koplienko–Neidhardt trace formulae”, J. Funct. Anal., 221:2 (2005), 456–481 | DOI | MR | Zbl

[79] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+784 pp. | DOI | MR | Zbl

[80] V. V. Peller, “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233:2 (2006), 515–544 | DOI | MR | Zbl

[81] V. V. Peller, “On S. Mazur's problems 8 and 88 from The Scottish Book”, Studia Math., 180:2 (2007), 191–198 | DOI | MR | Zbl

[82] V. V. Peller, “Differentiability of functions of contractions”, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Adv. Math. Sci., 63, Amer. Math. Soc., Providence, RI, 2009, 109–131 | DOI | MR | Zbl

[83] V. V. Peller, “The Lifshitz–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144:12 (2016), 5207–5215 | DOI | MR | Zbl

[84] V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6:1 (2016), 15–88 | DOI | MR | Zbl

[85] V. V. Peller, “Functions of triples of noncommuting self-adjoint operators under perturbations of class $\mathbf S_p$”, Proc. Amer. Math. Soc., 146:4 (2018), 1699–1711 | DOI | MR | Zbl

[86] V. V. Peller, “Functions of commuting contractions under perturbation”, Math. Nachr., 292:5 (2019), 1151–1160 | DOI | MR | Zbl

[87] V. V. Peller and S. V. Khrushchev, “Hankel operators, best approximations, and stationary Gaussian processes”, Russian Math. Surveys, 37:1 (1982), 61–144 | DOI | MR | Zbl

[88] J. D. Pincus, “Commutators and systems of singular integral equations. I”, Acta Math., 121 (1968), 219–249 | DOI | MR | Zbl

[89] J. D. Pincus, On the trace of commutators in the algebra of operators generated by an operator with trace class self-commutator, Stony Brook preprint, 1972

[90] D. Potapov, A. Skripka, and F. Sukochev, “Spectral shift function of higher order”, Invent. Math., 193:3 (2013), 501–538 | DOI | MR | Zbl

[91] D. Potapov, A. Skripka, and F. Sukochev, “Higher-order spectral shift for contractions”, Proc. Lond. Math. Soc. (3), 108:2 (2014), 327–349 | DOI | MR | Zbl

[92] D. Potapov, A. Skripka, and F. Sukochev, “Functions of unitary operators: derivatives and trace formulas”, J. Funct. Anal., 270:6 (2016), 2048–2072 | DOI | MR | Zbl

[93] D. Potapov and F. Sukochev, “Operator-Lipschitz functions in Schatten–von Neumann classes”, Acta Math., 207:2 (2011), 375–389 | DOI | MR | Zbl

[94] D. Potapov and F. Sukochev, “Koplienko spectral shift function on the unit circle”, Comm. Math. Phys., 309:3 (2012), 693–702 | DOI | MR | Zbl

[95] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 4ème éd., Gauthier-Villars, Paris; Akadémiai Kiadó, Budapest, 1965, viii+490 pp. | MR | Zbl

[96] R. Rochberg, “Toeplitz and Hankel operators on the Paley–Wiener space”, Integral Equations Operator Theory, 10:2 (1987), 187–235 | DOI | MR | Zbl

[97] M. Rosenblum, “The absolute continuity of Toeplitz's matrices”, Pacific J. Math., 10:3 (1960), 987–996 | DOI | MR | Zbl

[98] A. V. Rybkin, “The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances”, Math. USSR-Sb., 53:2 (1986), 421–431 | DOI | MR | Zbl

[99] A. V. Rybkin, “Trace for the pair of a contraction and a unitary operator”, Funct. Anal. Appl., 21:4 (1987), 334–336 | DOI | MR | Zbl

[100] A. V. Rybkin, “The discrete and the singular spectrum in the trace formula for contracting and unitary operators”, Funct. Anal. Appl., 23:3 (1989), 244–246 | DOI | MR | Zbl

[101] A. V. Rybkin, “The spectral shift function, the characteristic function of a contraction, and a generalized integral”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 237–281 | DOI | MR | Zbl

[102] L. Schwartz, Théorie des distributions, Publ. Inst. Math. Univ. Strasbourg, IX-X, Nouvelle ed., entierement corr., refondue et augmentée, Hermann, Paris, 1966, xiii+420 pp. | MR | Zbl

[103] S. Semmes, “Trace ideal criteria for Hankel operators, and applications to Besov spaces”, Integral Equations Operator Theory, 7:2 (1984), 241–281 | DOI | MR | Zbl

[104] B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó, Budapest; Masson et Cie, Paris, 1967, xi+373 pp. | MR | Zbl

[105] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhäuser Verlag, Basel–Boston–Stuttgart, 1983, x+285 pp. | DOI | MR | Zbl

[106] P. Vitse, “A Besov class functional calculus for bounded holomorphic semigroups”, J. Funct. Anal., 228:2 (2005), 245–269 | DOI | MR

[107] J. P. Williams, “Derivation ranges: open problems”, Topics in modern operator theory (Timişoara/Herculane 1980), Oper. Theory Adv. Appl., 2, Birkhäuser Verlag, Basel–Boston, MA, 1981, 319–328 | MR | Zbl