Operator-theoretic approach to the homogenization of Schr\"odinger-type equations with periodic coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 6, pp. 1023-1154

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2(\mathbb{R}^d;\mathbb{C}^n)$, we consider a selfadjoint strongly elliptic second-order differential operator ${\mathcal A}_\varepsilon$. It is assumed that the coefficients of ${\mathcal A}_\varepsilon$ are periodic and depend on ${\mathbf x}/\varepsilon$, where $\varepsilon>0$. We study the behaviour of the operator exponential $e^{-i{\mathcal A}_\varepsilon\tau}$ for small $\varepsilon$ and $\tau \in \mathbb{R}$. The results are applied to the homogenization of solutions of the Cauchy problem for the Schrödinger-type equation $i\partial_\tau{\mathbf u}_\varepsilon({\mathbf x},\tau)=({\mathcal A}_\varepsilon{\mathbf u}_\varepsilon)({\mathbf x},\tau)$ with initial data from a special class. For fixed $\tau$, as $\varepsilon \to 0$, the solution converges in $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to the solution of the homogenized problem; the error is of the order $O(\varepsilon)$. For fixed $\tau$ we obtain an approximation of the solution ${\mathbf u}_\varepsilon(\,\cdot\,,\tau)$ in the $L_2(\mathbb{R}^d;\mathbb{C}^n)$-norm with error $O(\varepsilon^2)$, and also an approximation of the solution in the $H^1(\mathbb{R}^d;\mathbb{C}^n)$-norm with error $O(\varepsilon)$. In these approximations correctors are taken into account. The dependence of errors on the parameter $\tau$ is traced. Bibliography: 113 items.
Keywords: periodic differential operators, Schrödinger-type equations, homogenization, operator error estimates.
@article{RM_2023_78_6_a1,
     author = {T. A. Suslina},
     title = {Operator-theoretic approach to the homogenization of {Schr\"odinger-type} equations with periodic coefficients},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1023--1154},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Operator-theoretic approach to the homogenization of Schr\"odinger-type equations with periodic coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 1023
EP  - 1154
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/
LA  - en
ID  - RM_2023_78_6_a1
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Operator-theoretic approach to the homogenization of Schr\"odinger-type equations with periodic coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 1023-1154
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/
%G en
%F RM_2023_78_6_a1
T. A. Suslina. Operator-theoretic approach to the homogenization of Schr\"odinger-type equations with periodic coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 6, pp. 1023-1154. http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/