Mots-clés : Schrödinger-type equations
@article{RM_2023_78_6_a1,
author = {T. A. Suslina},
title = {Operator-theoretic approach to the homogenization of {Schr\"odinger-type} equations with periodic coefficients},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1023--1154},
year = {2023},
volume = {78},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/}
}
TY - JOUR AU - T. A. Suslina TI - Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 1023 EP - 1154 VL - 78 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/ LA - en ID - RM_2023_78_6_a1 ER -
%0 Journal Article %A T. A. Suslina %T Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 1023-1154 %V 78 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/ %G en %F RM_2023_78_6_a1
T. A. Suslina. Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 6, pp. 1023-1154. http://geodesic.mathdoc.fr/item/RM_2023_78_6_a1/
[1] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl
[2] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | Zbl
[3] V. V. Jikov (Zhikov), S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | Zbl
[4] E. V. Sevost'janova, “An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients”, Math. USSR-Sb., 43:2 (1982), 181–198 | DOI | MR | Zbl
[5] V. V. Zhikov, “Spectral approach to asymptotic problems of diffusion”, Differ. Equ., 25:1 (1989), 33–39 | MR | Zbl
[6] C. Conca, R. Orive, and M. Vanninathan, “Bloch approximation in homogenization and applications”, SIAM J. Math. Anal., 33:5 (2002), 1166–1198 | DOI | MR | Zbl
[7] M. Sh. Birman and T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl
[8] M. Sh. Birman and T. A. Suslina, “Threshold approximations with corrector for the resolvent of a factorized selfadjoint operator family”, St. Petersburg Math. J., 17:5 (2006), 745–762 | DOI | MR | Zbl
[9] M. Sh. Birman and T. A. Suslina, “Homogenization with corrector term for periodic elliptic differential operators”, St. Petersburg Math. J., 17:6 (2006), 897–973 | DOI | MR | Zbl
[10] M. Sh. Birman and T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class $H^1(\mathbb R^d)$”, St. Petersburg Math. J., 18:6 (2007), 857–955 | DOI | MR | Zbl
[11] T. A. Suslina, “On homogenization of periodic parabolic systems”, Funct. Anal. Appl., 38:4 (2004), 309–312 | DOI | MR | Zbl
[12] T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007, 201–233 | DOI | MR | Zbl
[13] E. S. Vasilevskaya, “A periodic parabolic Cauchy problem. Homogenization with corrector”, St. Petersburg Math. J., 21:1 (2010), 1–41 | DOI | MR | Zbl
[14] T. Suslina, “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl
[15] E. S. Vasilevskaya and T. A. Suslina, “Threshold approximations for a factorized selfadjoint operator family with the first and second correctors taken into account”, St. Petersburg Math. J., 23:2 (2012), 275–308 | DOI | MR | Zbl
[16] E. S. Vasilevskaya and T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in $L_2(\mathbb{R}^d)$ with the first and second correctors taken into account”, St. Petersburg Math. J., 24:2 (2013), 185–261 | DOI | MR | Zbl
[17] T. A. Suslina, “Homogenization in the Sobolev class $H^1(\mathbb{R}^d)$ for second order periodic elliptic operators with the inclusion of first order terms”, St. Petersburg Math. J., 22:1 (2011), 81–162 | DOI | MR | Zbl
[18] T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in $L_2(\mathbb{R}^d)$ with corrector taken into account”, St. Petersburg Math. J., 26:4 (2015), 643–693 | DOI | MR | Zbl
[19] Yu. M. Meshkova, “Homogenization of the Cauchy problem for parabolic systems with periodic coefficients”, St. Petersburg Math. J., 25:6 (2014), 981–1019 | DOI | MR | Zbl
[20] Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the $L_2(\mathbb{R}^d)$-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718 | DOI | MR | Zbl
[21] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl
[22] V. V. Zhikov and S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[23] V. V. Zhikov and S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl
[24] V. V. Zhikov and S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511 | DOI | MR | Zbl
[25] M. Sh. Birman and T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928 | DOI | MR | Zbl
[26] Yu. M. Meshkova, “On the homogenization of periodic hyperbolic systems”, Math. Notes, 105:6 (2019), 929–934 | DOI | MR | Zbl
[27] Yu. M. Meshkova, “On operator error estimates for homogenization of hyperbolic systems with periodic coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660 | DOI | MR | Zbl
[28] Yu. M. Meshkova, Homogenization of periodic hyperbolic systems taking account of the corrector in the $L_2(\mathbb{R}^d)$-norm, Manuscript, 2018, 60 pp. (Russian) | DOI
[29] T. Suslina, “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523 | DOI | MR | Zbl
[30] M. A. Dorodnyi, “Operator error estimates for homogenization of the nonstationary Schrödinger-type equations: sharpness of the results”, Appl. Anal., 101:16 (2022), 5582–5614 | DOI | MR | Zbl
[31] M. A. Dorodnyi and T. A. Suslina, “Spectral approach to homogenization of hyperbolic equations with periodic coefficients”, J. Differential Equations, 264:12 (2018), 7463–7522 | DOI | MR | Zbl
[32] M. A. Dorodnyi and T. A. Suslina, “Homogenization of hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703 | DOI | MR | Zbl
[33] M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054 | DOI | MR | Zbl
[34] Yu. Meshkova, “Variations on the theme of the Trotter–Kato theorem for homogenization of periodic hyperbolic systems”, Russ. J. Math. Phys., 30:4 (2023), 561–598 | DOI
[35] T. A. Suslina, “Homogenization of a stationary periodic Maxwell system”, St. Petersburg Math. J., 16:5 (2005), 863–922 | DOI | MR | Zbl
[36] T. A. Suslina, “Homogenization with corrector for a stationary periodic Maxwell system”, St. Petersburg Math. J., 19:3 (2008), 455–494 | DOI | MR | Zbl
[37] M. A. Dorodnyi and T. A. Suslina, “Homogenization of a non-stationary periodic Maxwell system in the case of constant permeability”, J. Differential Equations, 307 (2022), 348–388 | DOI | MR | Zbl
[38] A. Piatnitski, V. Sloushch, T. Suslina, and E. Zhizhina, “On operator estimates in homogenization of nonlocal operators of convolution type”, J. Differential Equations, 352 (2023), 153–188 | DOI | MR | Zbl
[39] Yu. Kondratiev, S. Molchanov, and E. Zhizhina, “On ground state of some non local Schrödinger operators”, Appl. Anal., 96:8 (2017), 1390–1400 | DOI | MR | Zbl
[40] A. Piatnitski and E. Zhizhina, “Periodic homogenization of nonlocal operators with a convolution-type kernel”, SIAM J. Math. Anal., 49:1 (2017), 64–81 | DOI | MR | Zbl
[41] D. I. Borisov, E. A. Zhizhina, and A. L. Piatnitskii, “Spectrum of a convolution operator with potential”, Russian Math. Surveys, 77:3 (2022), 546–548 | DOI | MR | Zbl
[42] N. Veniaminov, “Homogenization of periodic differential operators of high order”, St. Petersburg Math. J., 22:5 (2011), 751–775 | DOI | MR | Zbl
[43] A. A. Kukushkin and T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108 | DOI | MR | Zbl
[44] V. A. Sloushch and T. A. Suslina, “Homogenization of the fourth-order elliptic operator with periodic coefficients with correctors taken into account”, Funct. Anal. Appl., 54:3 (2020), 224–228 | DOI | MR | Zbl
[45] V. A. Sloushch and T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, St. Petersburg Math. J., 33:2 (2022), 355–385 | DOI | MR | Zbl
[46] V. A. Sloushch and T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024) (to appear)
[47] A. A. Miloslova and T. A. Suslina, “Homogenization of the higher-order parabolic equations with periodic coefficients”, J. Math. Sci. (N. Y.), 277 (2023), 959–1023 | DOI | MR | Zbl
[48] T. A. Suslina, “Homogenization of the higher-order Schrödinger-type equations with periodic coefficients”, Partial differential equations, spectral theory, and mathematical physics, The Ari Laptev anniversary volume, EMS Ser. Congr. Rep., EMS Press, Berlin, 2021, 405–426 | DOI | MR | Zbl
[49] T. A. Suslina, “Homogenization of the higher-order hyperbolic equations with periodic coefficients”, Lobachevskii J. Math., 42:14 (2021), 3518–3542 | DOI | MR | Zbl
[50] S. E. Pastukhova, “Operator error estimates for homogenization of fourth order elliptic equations”, St. Petersburg Math. J., 28:2 (2017), 273–289 | DOI | MR | Zbl
[51] S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7 (2016), 1449–1466 | DOI | MR | Zbl
[52] S. E. Pastukhova, “$L^2$-approximation of the resolvents in homogenization of higher order elliptic operators”, J. Math. Sci. (N. Y.), 251:6 (2020), 902–925 | DOI | MR | Zbl
[53] S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134 | DOI | MR | Zbl
[54] S. E. Pastukhova, “Improved resolvent $L^2$-approximations in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634 | DOI | MR | Zbl
[55] G. Griso, “Error estimate and unfolding for periodic homogenization”, Asymptot. Anal., 40:3-4 (2004), 269–286 | MR | Zbl
[56] G. Griso, “Interior error estimate for periodic homogenization”, Anal. Appl. (Singap.), 4:1 (2006), 61–79 | DOI | MR | Zbl
[57] C. E. Kenig, Fanghua Lin, and Zhongwei Shen, “Convergence rates in $L^2$ for elliptic homogenization problems”, Arch. Ration. Mech. Anal., 203:3 (2012), 1009–1036 | DOI | MR | Zbl
[58] M. A. Pakhnin and T. A. Suslina, “Operator error estimates for homogenization of the elliptic Dirichlet problem in a bounded domain”, St. Petersburg Math. J., 24:6 (2013), 949–976 | DOI | MR | Zbl
[59] T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476 | DOI | MR | Zbl
[60] T. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493 | DOI | MR | Zbl
[61] T. A. Suslina, “Homogenization of elliptic operators with periodic coefficients in dependence of the spectral parameter”, St. Petersburg Math. J., 27:4 (2016), 651–708 | DOI | MR | Zbl
[62] Yu. M. Meshkova and T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: two-parametric error estimates, 2017, 45 pp., arXiv: 1702.00550
[63] Yu. M. Meshkova and T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funct. Anal. Appl., 51:3 (2017), 230–235 | DOI | MR | Zbl
[64] Qiang Xu, “Convergence rates for general elliptic homogenization problems in Lipschitz domains”, SIAM J. Math. Anal., 48:6 (2016), 3742–3788 | DOI | MR | Zbl
[65] Zhongwei Shen and Jinping Zhuge, “Convergence rates in periodic homogenization of systems of elasticity”, Proc. Amer. Math. Soc., 145:3 (2017), 1187–1202 | DOI | MR | Zbl
[66] Zhongwei Shen, Periodic homogenization of elliptic systems, Oper. Theory Adv. Appl., 269, Adv. Partial Differ. Equ. (Basel), Birkhäuser/Springer, Cham, 2018, ix+291 pp. | DOI | MR | Zbl
[67] Yu. M. Meshkova and T. A. Suslina, “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775 | DOI | MR | Zbl
[68] Yu. M. Meshkova and T. A. Suslina, “Homogenization of the first initial boundary-value problem for parabolic systems: operator error estimates”, St. Petersburg Math. J., 29:6 (2018), 935–978 | DOI | MR | Zbl
[69] Jun Geng and Zhongwei Shen, “Convergence rates in parabolic homogenization with time-dependent periodic coefficients”, J. Funct. Anal., 272:5 (2017), 2092–2113 | DOI | MR | Zbl
[70] T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain in the case of constant magnetic permeability”, St. Petersburg Math. J., 30:3 (2019), 515–544 | DOI | MR | Zbl
[71] T. A. Suslina, “Homogenization of the stationary Maxwell system with periodic coefficients in a bounded domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507 | DOI | MR | Zbl
[72] T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362 | DOI | MR | Zbl
[73] T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Var. Elliptic Equ., 63:7-8 (2018), 1185–1215 | DOI | MR | Zbl
[74] T. A. Suslina, “Homogenization of higher-order parabolic systems in a bounded domain”, Appl. Anal., 98:1-2 (2019), 3–31 | DOI | MR | Zbl
[75] Weisheng Niu, Zhongwei Shen, and Yao Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, J. Funct. Anal., 274:8 (2018), 2356–2398 | DOI | MR | Zbl
[76] Shu Gu, “Convergence rates in homogenization of Stokes systems”, J. Differential Equations, 260:7 (2016), 5796–5815 | DOI | MR | Zbl
[77] D. I. Borisov, “Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients”, St. Petersburg Math. J., 20:2 (2009), 175–191 | DOI | MR | Zbl
[78] S. E. Pastukhova and R. N. Tikhomirov, “Operator estimates in reiterated and locally periodic homogenization”, Dokl. Math., 76:1 (2007), 548–553 | DOI | MR | Zbl
[79] S. E. Pastukhova and R. N. Tikhomirov, “Estimates of locally periodic and reiterated homogenization for parabolic equations”, Dokl. Math., 80:2 (2009), 674–678 | DOI | MR | Zbl
[80] S. E. Pastukhova, “Approximation of the exponential of a diffusion operator with multiscale coefficients”, Funct. Anal. Appl., 48:3 (2014), 183–197 | DOI | MR | Zbl
[81] S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5 (2020), 818–838 | DOI | MR | Zbl
[82] N. N. Senik, “On homogenization for non-self-adjoint locally periodic elliptic operators”, Funct. Anal. Appl., 51:2 (2017), 152–156 | DOI | MR | Zbl
[83] N. N. Senik, “On homogenization of locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72 | DOI | MR | Zbl
[84] N. N. Senik, “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2022), 125581, 24 pp. | DOI | MR | Zbl
[85] N. N. Senik, “Homogenization for locally periodic elliptic problems on a domain”, SIAM J. Math. Anal., 55:2 (2023), 849–881 | DOI | MR | Zbl
[86] N. N. Senik, “On homogenization for piecewise locally periodic operators”, Russ. J. Math. Phys., 30:2 (2023), 270–274 | DOI | MR | Zbl
[87] Weisheng Niu, Zhongwei Shen, and Yao Xu, “Quantitative estimates in reiterated homogenization”, J. Funct. Anal., 279:11 (2020), 108759, 39 pp. | DOI | MR | Zbl
[88] K. D. Cherednichenko and S. Cooper, “Resolvent estimates for high-contrast elliptic problems with periodic coefficients”, Arch. Ration. Mech. Anal., 219:3 (2016), 1061–1086 | DOI | MR | Zbl
[89] K. D. Cherednichenko, Yu. Yu. Ershova, and A. V. Kiselev, “Effective behaviour of critical-contrast PDEs: micro-resonanses, frequency conversion, and time dispersive properties. I”, Comm. Math. Phys., 375:3 (2020), 1833–1884 | DOI | MR | Zbl
[90] D. Borisov, G. Cardone, L. Faella, and C. Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary”, J. Differential Equations, 255:12 (2013), 4378–4402 | DOI | MR | Zbl
[91] D. Borisov, R. Bunoiu, and G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Z. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl
[92] D. I. Borisov and T. F. Sharapov, “On the resolvent of multidimensional operators with frequently alternating boundary conditions with the Robin homogenized condition”, J. Math. Sci. (N. Y.), 213:4 (2016), 461–503 | DOI | MR | Zbl
[93] A. G. Chechkina, C. D'Apice, and U. De Maio, “Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition”, J. Comput. Appl. Math., 376 (2020), 112802, 11 pp. | DOI | MR | Zbl
[94] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94 | MR | Zbl
[95] T. A. Suslina, “Spectral approach to homogenization of elliptic operators in a perforated space”, Rev. Math. Phys., 30:8 (2018), 1840016, 57 pp. | DOI | MR | Zbl
[96] K. Cherednichenko, P. Dondl, and F. Rösler, “Norm-resolvent convergence in perforated domains”, Asymptot. Anal., 110:3-4 (2018), 163–184 | DOI | MR | Zbl
[97] S. E. Pastukhova, “Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space”, J. Math. Sci. (N. Y.), 265:6 (2022), 1008–1026 | DOI | MR | Zbl
[98] D. Borisov, G. Cardone, and T. Durante, “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. Roy. Soc. Edinburgh Sect. A, 146:6 (2016), 1115–1158 | DOI | MR | Zbl
[99] D. I. Borisov and A. I. Mukhametrakhimova, “Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition”, Sb. Math., 212:8 (2021), 1068–1121 | DOI | MR | Zbl
[100] D. I. Borisov, “Operator estimates for non-periodically perforated domains: disappearance of cavities”, Appl. Anal. (2023), Publ. online | DOI
[101] D. I. Borisov and J. Kříž, “Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit”, Anal. Math. Phys., 13:1 (2023), 5, 34 pp. | DOI | MR | Zbl
[102] A. Khrabustovskyi and O. Post, “Operator estimates for the crushed ice problem”, Asymptot. Anal., 110:3-4 (2018), 137–161 | DOI | MR | Zbl
[103] C. Anné and O. Post, “Wildly perturbed manifolds: norm resolvent and spectral convergence”, J. Spectr. Theory, 11:1 (2021), 229–279 | DOI | MR | Zbl
[104] A. Khrabustovskyi and M. Plum, “Operator estimates for homogenization of the Robin Laplacian in a perforated domain”, J. Differential Equations, 338 (2022), 474–517 | DOI | MR | Zbl
[105] S. Brahim-Otsmane, G. A. Francfort, and F. Murat, “Correctors for the homogenization of the wave and heat equations”, J. Math. Pures Appl. (9), 71:3 (1992), 197–231 | MR | Zbl
[106] G. Allaire and A. Piatnitski, “Homogenization of the Schrödinger equation and effective mass theorems”, Comm. Math. Phys., 258:1 (2005), 1–22 | DOI | MR | Zbl
[107] S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819 | DOI | MR | Zbl
[108] M. A. Dorodnyi and T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023) (to appear)
[109] T. A. Suslina, “Threshold approximations of the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024) (to appear)
[110] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | Zbl
[111] V. G. Maz'ya and T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Monogr. Stud. Math., 23, Pitman, Boston, MA, 1985, xiii+344 pp. | MR | Zbl
[112] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | Zbl
[113] R. G. Shterenberg, “On the structure of the lower edge of the spectrum of the periodic magnetic Schrödinger operator with small magnetic potential”, St. Petersburg Math. J., 17:5 (2006), 865–873 | DOI | MR | Zbl