Renormalization in one-dimensional dynamics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 6, pp. 983-1021
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of the dynamical and topological properties of interval exchange transformations and their natural generalizations is an important problem, which lies at the intersection of several branches of mathematics, including dynamical systems, low-dimensional topology, algebraic geometry, number theory, and geometric group theory. The purpose of the survey is to make a systematic presentation of the existing results on the ergodic and geometric characteristics of the one-dimensional maps under consideration, as well as on the measured foliations on surfaces and two-dimensional complexes that one can associate with these maps. These results are based on the research of the ergodic properties of the renormalization process — an algorithm that takes an original dynamical system and builds a sequence of equivalent dynamical systems with a smaller support set. For all dynamical systems considered in the paper these renormalization algorithms can be viewed as multidimensional fraction algorithms. Bibiliography: 74 titles.
Keywords: measured foliations on surfaces, renormalization.
Mots-clés : interval exchange transformations
@article{RM_2023_78_6_a0,
     author = {A. S. Skripchenko},
     title = {Renormalization in one-dimensional dynamics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {983--1021},
     year = {2023},
     volume = {78},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_6_a0/}
}
TY  - JOUR
AU  - A. S. Skripchenko
TI  - Renormalization in one-dimensional dynamics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 983
EP  - 1021
VL  - 78
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_6_a0/
LA  - en
ID  - RM_2023_78_6_a0
ER  - 
%0 Journal Article
%A A. S. Skripchenko
%T Renormalization in one-dimensional dynamics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 983-1021
%V 78
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2023_78_6_a0/
%G en
%F RM_2023_78_6_a0
A. S. Skripchenko. Renormalization in one-dimensional dynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 6, pp. 983-1021. http://geodesic.mathdoc.fr/item/RM_2023_78_6_a0/

[1] J. Aaronson, An introduction to infinite ergodic theory, Math. Surveys Monogr., 50, Amer. Math. Soc., Providence, RI, 1997, xii+284 pp. | MR | Zbl

[2] L. M. Abramov and V. A. Rokhlin, “The entropy of a skew product of measure-preserving transformations”, Amer. Math. Soc. Transl. Ser. 2, 48, Amer. Math. Soc., Providence, RI, 1965, 225–265 | MR | Zbl

[3] P. Arnoux and G. Rauzy, “Représentation géométrique de suites de complexité $2n+1$”, Bull. Soc. Math. France, 119:2 (1991), 199–215 | DOI | MR | Zbl

[4] P. Arnoux and Š. Starosta, “Rauzy gasket”, Further developments in fractals and related fields. Mathematical foundations and connections, Trends Math., Birkhäuser/Springer, New York, 2013, 1–23 | DOI | MR | Zbl

[5] P. Arnoux and J.-C. Yoccoz, “Construction de difféomorphismes pseudo-Anosov”, C. R. Acad. Sci. Paris Sér. I Math., 292:1 (1981), 75–78 | MR | Zbl

[6] M. Artigiani, Ch. Fougeron, P. Hubert, and A. Skripchenko, “A note on double rotations of infinite type”, Trans. Moscow Math. Soc., 82 (2021), 157–172 | DOI | MR | Zbl

[7] A. Avila and V. Delecroix, Some monoids of Pisot matrices, 2015, 6 pp., arXiv: 1506.03692

[8] A. Avila and V. Delecroix, “Weak mixing directions in non-arithmetic Veech surfaces”, J. Amer. Math. Soc., 29:4 (2016), 1167–1208 | DOI | MR | Zbl

[9] A. Avila and G. Forni, “Weak mixing for interval exchange transformations and translation flows”, Ann. of Math. (2), 165:2 (2007), 637–664 | DOI | MR | Zbl

[10] A. Avila, S. Gouëzel, and J.-C. Yoccoz, “Exponential mixing for the Teichmüller flow”, Publ. Math. Inst. Hautes Études Sci., 2006, no. 104, 143–211 | DOI | MR | Zbl

[11] A. Avila, P. Hubert, and A. Skripchenko, “On the Hausdorff dimension of the Rauzy gasket”, Bull. Soc. Math. France, 144:3 (2016), 539–568 | DOI | MR | Zbl

[12] A. Avila, P. Hubert, and A. Skripchenko, “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. Math., 206:1 (2016), 109–146 | DOI | MR | Zbl

[13] A. Avila and M. Viana, “Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture”, Acta Math., 198:1 (2007), 1–56 | DOI | MR | Zbl

[14] M. Bestvina and M. Feighn, “Stable actions of groups on real trees”, Invent. Math., 121:2 (1995), 287–321 | DOI | MR | Zbl

[15] C. Boissy and E. Lanneau, “Dynamics and geometry of the Rauzy–Veech induction for quadratic differentials”, Ergodic Theory Dynam. Systems, 29:3 (2009), 767–816 | DOI | MR | Zbl

[16] M. Boshernitzan, “A condition for minimal interval exchange maps to be uniquely ergodic”, Duke Math. J., 52:3 (1985), 723–752 | DOI | MR | Zbl

[17] M. Boshernitzan and I. Kornfeld, “Interval translation mappings”, Ergodic Theory Dynam. Systems, 15:5 (1995), 821–832 | DOI | MR | Zbl

[18] H. Bruin and S. Troubetzkoy, “The Gauss map on a class of interval translation mappings”, Israel J. Math., 137 (2003), 125–148 | DOI | MR | Zbl

[19] J. Buzzi and P. Hubert, “Piecewise monotone maps without periodic points: rigidity, measures and complexity”, Ergodic Theory Dynam. Systems, 24:2 (2004), 383–405 | DOI | MR | Zbl

[20] M. Damron and J. Fickensher, “The number of ergodic measures for transitive subshifts under the regular bispecial condition”, Ergodic Theory Dynam. Systems, 42:1 (2022), 86–140 | DOI | MR | Zbl

[21] C. Danthony and A. Noguiera, “Involutions linéaires et feuilletages mesurés”, C. R. Acad. Sci. Paris Sér. I Math., 307:8 (1988), 409–412 | MR | Zbl

[22] R. De Leo and I. A. Dynnikov, “Geometry of plane sections of the infinite regular skew polyhedron $\{4,6|4\}$”, Geom. Dedicata, 138:1 (2009), 51–67 | DOI | MR | Zbl

[23] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture for the case of small perturbations of rational magnetic fields”, Russian Math. Surveys, 47:3 (1992), 172–173 | DOI | MR | Zbl

[24] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture on the semiclassical motion of an electron”, Math. Notes, 53:5 (1993), 495–501 | DOI | MR | Zbl

[25] I. A. Dynnikov, “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 45–73 | DOI | MR | Zbl

[26] I. A. Dynnikov, “Interval identification systems and plane sections of 3-periodic surfaces”, Proc. Steklov Inst. Math., 263 (2008), 65–77 | DOI | MR | Zbl

[27] I. Dynnikov, P. Hubert, and A. Skripchenko, “Dynamical systems around the Rauzy gasket and their ergodic properties”, Int. Math. Res. Not. IMRN, 2023:8 (2023), 6461–6503 | DOI | Zbl

[28] I. Dynnikov and A. Skripchenko, “On typical leaves of a measured foliated 2-complex of thin type”, Topology, geometry, integrable systems, and mathematical physics, Novikov's seminar 2012–2014, Amer. Math. Soc. Transl. Ser. 2, 234, Adv. Math. Sci., 67, Amer. Math. Soc., Providence, RI, 2014, 173–199 | DOI | MR | Zbl

[29] I. Dynnikov and A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Trans. Moscow Math. Soc., 76:2 (2015), 251–269 | DOI | MR | Zbl

[30] I. Dynnikov and A. Skripchenko, “Minimality of interval exchange transformations with restrictions”, J. Mod. Dyn., 11 (2017), 219–248 | DOI | MR | Zbl

[31] A. Eskin and M. Mirzakhani, “Invariant and stationary measures for $\operatorname{SL}(2,\mathbb R)$ the action on moduli space”, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95–324 | DOI | MR | Zbl

[32] A. Fathi, F. Laudenbach, and V. Poénaru (eds.), Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque, 66-67, Soc. Math. France, Paris, 1979, 284 pp. | MR | Zbl

[33] J. Fickenscher, “Self-inverses, Lagrangian permutations and minimal interval exchange transformations with many ergodic measures”, Commun. Contemp. Math., 16:1 (2014), 1350019, 51 pp. | DOI | MR | Zbl

[34] G. Forni, “Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus”, Ann. of Math. (2), 146:2 (1997), 295–344 | DOI | MR | Zbl

[35] Ch. Fougeron, Dynamical properties of simplicial systems and continued fraction algorithms, 2020, 60 pp., arXiv: 2001.01367

[36] Ch. Fougeron and A. Skripchenko, “Simplicity of spectra for certain multidimensional continued fraction algorithms”, Monatsh. Math., 194:4 (2021), 767–787 | DOI | MR | Zbl

[37] D. Gaboriau, “Dynamique des systèmes d'isométries: sur les bouts des orbites”, Invent. Math., 126:2 (1996), 297–318 | DOI | MR | Zbl

[38] D. Gaboriau, G. Levitt, and F. Paulin, “Pseudogroups of isometries of $\mathbb R$ and Rips' theorem on free actions on $\mathbb R$-trees”, Israel J. Math., 87:1-3 (1994), 403–428 | DOI | MR | Zbl

[39] R. Gutiérrez-Romo and C. Matheus, “Lower bounds on the dimension of the Rauzy gasket”, Bull. Soc. Math. France, 148:2 (2020), 321–327 | DOI | MR | Zbl

[40] C. A. Hernández and G. Soler López, “Minimality and the Rauzy–Veech algorithm for interval exchange transformations with flips”, Dyn. Syst., 28:4 (2013), 539–550 | DOI | MR | Zbl

[41] A. B. Katok, “Invariant measures of flows on oriented surfaces”, Soviet Math. Dokl., 14 (1973), 1104–1108 | MR | Zbl

[42] A. Katok, “Interval exchange transformations and some special flows are not mixing”, Israel J. Math., 35:4 (1980), 301–310 | DOI | MR | Zbl

[43] M. Keane, “Interval exchange transformations”, Math. Z., 141 (1975), 25–31 | DOI | MR | Zbl

[44] M. Keane, “Non-ergodic interval exchange transformations”, Israel J. Math., 26:2 (1977), 188–196 | DOI | MR | Zbl

[45] S. P. Kerckhoff, “Simplicial systems for interval exchange maps and measured foliations”, Ergodic Theory Dynam. Systems, 5:2 (1985), 257–271 | DOI | MR | Zbl

[46] H. B. Keynes and D. Newton, “A ‘minimal’, non-uniquely ergodic interval exchange transformation”, Math. Z., 148:2 (1976), 101–105 | DOI | MR | Zbl

[47] M. Kontsevich and A. Zorich, “Connected components of the moduli spaces of Abelian differentials with prescribed singularities”, Invent. Math., 153:3 (2003), 631–678 | DOI | MR | Zbl

[48] J. C. Lagarias, “The quality of the Diophantine approximations found by the Jacobi–Perron algorithm and related algorithms”, Monatsh. Math., 115:4 (1993), 299–328 | DOI | MR | Zbl

[49] E. Lanneau, S. Marmi, and A. Skripchenko, “Cohomological equations for linear involutions”, Dyn. Syst., 36:2 (2021), 292–304 | DOI | MR | Zbl

[50] G. Levitt, “La dynamique des pseudogroupes de rotations”, Invent. Math., 113:3 (1993), 633–670 | DOI | MR | Zbl

[51] A. Linero Bas and G. Soler López, “Minimal non uniquely ergodic IETs with flips”, J. Differential Equations, 360 (2023), 232–259 | DOI | MR | Zbl

[52] A. Ya. Maltsev and S. P. Novikov, “Dynamical systems, topology, and conductivity in normal metals”, J. Statist. Phys., 115:1-2 (2004), 31–46 | DOI | MR | Zbl

[53] S. Marmi, P. Moussa, and J.-C. Yoccoz, “The cohomological equation for Roth-type interval exchange maps”, J. Amer. Math. Soc., 18:4 (2005), 823–872 | DOI | MR | Zbl

[54] S. Marmi, P. Moussa, and J.-C. Yoccoz, “Linearization of generalized interval exchange maps”, Ann. of Math. (2), 176:3 (2012), 1583–1646 | DOI | MR | Zbl

[55] H. Masur, “Interval exchange transformations and measured foliations”, Ann. of Math. (2), 115:1 (1982), 169–200 | DOI | MR | Zbl

[56] C. Matheus, M. Möller, and J.-C. Yoccoz, “A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces”, Invent. Math., 202:1 (2015), 333–425 | DOI | MR | Zbl

[57] A. Nogueira, “Almost all interval exchange transformations with flips are nonergodic”, Ergodic Theory Dynam. Systems, 9:3 (1989), 515–525 | DOI | MR | Zbl

[58] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[59] M. Policott and B. Sewell, An upper bound on the dimension of the Rauzy gasket, 2023 (v1 – 2021), 14 pp., arXiv: 2110.07264

[60] O. M. Sarig, “Thermodynamic formalism for countable Markov shifts”, Ergodic Theory Dynam. Systems, 19:6 (1999), 1565–1593 | DOI | MR | Zbl

[61] E. A. Sataev, “On the number of invariant measures for flows on orientable surfaces”, Math. USSR-Izv., 9:4 (1975), 813–830 | DOI | MR | Zbl

[62] S. Schwartzman, “Asymptotic cycles”, Ann. of Math. (2), 66:2 (1957), 270–284 | DOI | MR | Zbl

[63] F. Schweiger, Multidimensional continued fractions, Oxford Sci. Publ., Oxford Univ. Press, Oxford, 2000, viii+234 pp. | MR | Zbl

[64] A. Skripchenko, “On connectedness of chaotic sections of some 3-periodic surfaces”, Ann. Global Anal. Geom., 43:3 (2013), 253–271 | DOI | MR | Zbl

[65] A. Skripchenko and S. Troubetzkoy, “Polygonal billiards with one sided scattering”, Ann. Inst. Fourier (Grenoble), 65:5 (2015), 1881–1896 | DOI | MR | Zbl

[66] A. Skripchenko and S. Troubetzkoy, “On the Hausdorff dimension of minimal interval exchange transformations with flips”, J. Lond. Math. Soc. (2), 97:2 (2018), 149–169 | DOI | MR | Zbl

[67] J. Stallings, Group theory and three-dimensional manifolds, Yale Math. Monogr., 4, Yale Univ. Press, New Haven, CT–London, 1971, v+65 pp. | MR | Zbl

[68] H. Suzuki, S. Ito, and K. Aihara, “Double rotations”, Discrete Contin. Dyn. Syst., 13:2 (2005), 515–532 | DOI | MR | Zbl

[69] W. A. Veech, “Gauss measures for transformations on the space of interval exchange maps”, Ann. of Math. (2), 115:2 (1982), 201–242 | DOI | MR | Zbl

[70] M. Viana, “Ergodic theory of interval exchange map”, Rev. Mat. Complut., 19:1 (2006), 7–100 | DOI | MR | Zbl

[71] D. Volk, “Almost every interval translation map of three intervals is finite type”, Discrete Contin. Dyn. Syst., 34:5 (2014), 2307–2314 | DOI | MR | Zbl

[72] A. V. Zorich, “A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field”, Russian Math. Surveys, 39:5 (1984), 287–288 | DOI | MR | Zbl

[73] A. Zorich, “Deviation for interval exchange transformations”, Ergodic Theory Dynam. Systems, 17:6 (1997), 1477–1499 | DOI | MR | Zbl

[74] A. Zorich, “How do the leaves of a closed 1-form wind around a surface?”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, 135–178 | DOI | MR | Zbl