@article{RM_2023_78_5_a4,
author = {A. V. Bobylev},
title = {On a property of discrete models of the wave kinetic equation},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {958--960},
year = {2023},
volume = {78},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a4/}
}
A. V. Bobylev. On a property of discrete models of the wave kinetic equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 958-960. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a4/
[1] M. Escobedo and J. J. L. Velázquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238, No 1124, Amer. Math. Soc., Providence, RI, 2015, v+107 pp. | DOI | MR | Zbl
[2] A. Dymov and S. Kuksin, Comm. Math. Phys., 382:2 (2021), 951–1014 | DOI | MR | Zbl
[3] A. V. Bobylev and S. B. Kuksin, Keldysh Institute preprints, 2023, 031, 20 pp. (Russian) | DOI
[4] A. V. Bobylev and M. C. Vinerean, J. Stat. Phys., 132:1 (2008), 153–170 | DOI | MR | Zbl
[5] T. Platkowski and R. Illner, SIAM Rev., 30:2 (1988), 213–255 | DOI | MR | Zbl
[6] A. Palczewski, J. Schneider, and A. V. Bobylev, SIAM J. Numer. Anal., 34:5 (1997), 1865–1883 | DOI | MR | Zbl