A lower bound for triangulation complexity for compact 3-manifolds with boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 955-957 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2023_78_5_a3,
     author = {D. D. Nigomedyanov and E. A. Fominykh},
     title = {A lower bound for triangulation complexity for compact 3-manifolds with boundary},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {955--957},
     year = {2023},
     volume = {78},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a3/}
}
TY  - JOUR
AU  - D. D. Nigomedyanov
AU  - E. A. Fominykh
TI  - A lower bound for triangulation complexity for compact 3-manifolds with boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 955
EP  - 957
VL  - 78
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_5_a3/
LA  - en
ID  - RM_2023_78_5_a3
ER  - 
%0 Journal Article
%A D. D. Nigomedyanov
%A E. A. Fominykh
%T A lower bound for triangulation complexity for compact 3-manifolds with boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 955-957
%V 78
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2023_78_5_a3/
%G en
%F RM_2023_78_5_a3
D. D. Nigomedyanov; E. A. Fominykh. A lower bound for triangulation complexity for compact 3-manifolds with boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 955-957. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a3/

[1] E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, and A. Vesnin, Exp. Math., 25:4 (2016), 466–481 | DOI | MR | Zbl

[2] W. Jaco, H. Rubinstein, J. Spreer, and S. Tillmann, J. Topol., 13:1 (2020), 308–342 | DOI | MR | Zbl

[3] M. Lackenby and J. S. Purcell, “The triangulation complexity of fibred 3-manifolds”, Geom. Topol. (to appear); 2022 (v1 – 2019), 77 pp., arXiv: 1910.10914

[4] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, 2nd ed., Springer, Berlin, 2007, xiv+492 pp. | DOI | MR | Zbl

[5] R. Frigerio, B. Martelli, and C. Petronio, J. Differential Geom., 64:3 (2003), 425–455 | DOI | MR | Zbl