Mots-clés : billiard, confocal quadrics, billiard book, Liouville equivalence, Fomenko–Zieschang invariant
@article{RM_2023_78_5_a2,
author = {A. T. Fomenko and V. V. Vedyushkina},
title = {Billiards and integrable systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {881--954},
year = {2023},
volume = {78},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a2/}
}
A. T. Fomenko; V. V. Vedyushkina. Billiards and integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 881-954. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a2/
[1] S. Smale, “Topology and mechanics. I”, Invent. Math., 10 (1970), 305–331 ; “II. The planar $n$-body problem”, 11 (1970), 45–64 | DOI | MR | Zbl | DOI | MR | Zbl
[2] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[3] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[4] A. T. Fomenko and Kh. Tsishang (H. Zieschang), “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[5] A. V. Bolsinov, S. V. Matveev, and A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl
[6] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | Zbl
[7] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[8] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl
[9] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | Zbl
[10] N. N. Nekhoroshev, “An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems”, Russian Math. Surveys, 32:6 (1977), 1–65 | DOI | MR | Zbl
[11] A. V. Bolsinov and A. T. Fomenko, “The geodesic flow of an ellipsoid is orbitally equivalent to the Euler integrable case in the dynamics of a rigid body”, Dokl. Math., 50:3 (1995), 412–417 | MR | Zbl
[12] Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl
[13] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | MR | Zbl
[14] E. A. Kudryavtseva and A. A. Oshemkov, “Structurally stable nondegenerate singularities of integrable systems”, Russ. J. Math. Phys., 29:1 (2022), 57–75 | DOI | MR | Zbl
[15] A. Bolsinov, L. Guglielmi, and E. Kudryavtseva, “Symplectic invariants for parabolic orbits and cusp singularities of integrable systems”, Philos. Trans. Roy. Soc. A, 376:2131 (2018), 20170424, 29 pp. | DOI | MR | Zbl
[16] D. A. Fedoseev and A. T. Fomenko, “Noncompact bifurcations of integrable dynamic systems”, J. Math. Sci. (N. Y.), 248:6 (2020), 810–827 | DOI | MR | Zbl
[17] S. V. Bolotin, “Integrable Birkhoff billiards”, Moscow Univ. Mech. Bull., 45:2 (1990), 10–13 | MR | Zbl
[18] S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 | DOI | MR | Zbl
[19] M. Bialy and A. E. Mironov, “Angular billiard and algebraic Birkhoff conjecture”, Adv. Math., 313 (2017), 102–126 | DOI | MR | Zbl
[20] M. Bialy and A. E. Mironov, “Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane”, J. Geom. Phys., 115 (2017), 150–156 | DOI | MR | Zbl
[21] A. A. Glutsyuk, “On two-dimensional polynomially integrable billiards on surfaces of constant curvature”, Dokl. Math., 98:1 (2018), 382–385 | DOI | MR | Zbl
[22] A. A. Glutsyuk, “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, J. Eur. Math. Soc. (JEMS), 23:3 (2021), 995–1049 | DOI | MR | Zbl
[23] A. Avila, J. De Simoi, and V. Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. of Math. (2), 184:2 (2016), 527–558 | DOI | MR | Zbl
[24] V. Kaloshin and A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018), 315–380 | DOI | MR | Zbl
[25] H. Poritsky, “The billiard ball problem on a table with a convex boundary – an illustrative dynamical problem”, Ann. of Math. (2), 51 (1950), 446–470 | DOI | MR | Zbl
[26] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl
[27] V. Dragović and M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl
[28] V. V. Fokicheva (Vedyushkina), “Description of singularities for system ‘billiard in an ellipse’”, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl
[29] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[30] V. V. Fokicheva (Vedyushkina), “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | MR | Zbl
[31] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | MR | Zbl
[32] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | MR | Zbl
[33] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | MR | Zbl
[34] A. T. Fomenko and V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, Eur. J. Math., 8:4 (2022), 1392–1423 | DOI | MR | Zbl
[35] A. T. Fomenko and V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow Univ. Math. Bull., 74:3 (2019), 98–107 | DOI | MR | Zbl
[36] V. V. Vedyushkina, A. T. Fomenko, and I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl
[37] V. V. Vedyushkina, V. A. Kibkalo, and A. T. Fomenko, “Topological modeling of integrable systems by billiards: realization of numerical invariants”, Dokl. Math., 102:1 (2020), 269–271 | DOI | MR | Zbl
[38] V. V. Vedyushkina, “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Moscow Univ. Math. Bull., 76:2 (2021), 60–64 | DOI | MR | Zbl
[39] V. V. Vedyushkina and V. A. Kibkalo, “Realization of the numerical invariant of the Seifert fibration of integrable systems by billiards”, Moscow Univ. Math. Bull., 75:4 (2020), 161–168 | DOI | MR | Zbl
[40] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179 | DOI | MR | Zbl
[41] I. M. Nikonov, “Description of degenerate two-dimensional singularities with single critical point”, Moscow Univ. Math. Bull., 74:3 (2019), 87–97 | DOI | MR | Zbl
[42] I. S. Kharcheva, “Isoenergetic manifolds of integrable billiard books”, Moscow Univ. Math. Bull., 75:4 (2020), 149–160 | DOI | MR | Zbl
[43] V. V. Vedyushkina, “Topological type of isoenergy surfaces of billiard books”, Sb. Math., 212:12 (2021), 1660–1674 | DOI | MR | Zbl
[44] F. Waldhausen, “Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I”, Invent. Math., 3:4 (1967), 308–333 | DOI | MR | Zbl
[45] F. Waldhausen, “Eine Klasse von 3-dimensionalen Mannigfaltighkeiten. II”, Invent. Math., 4:2 (1967), 88–117 | DOI | MR | Zbl
[46] V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225 | DOI | MR | Zbl
[47] V. A. Kibkalo, A. T. Fomenko, and I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82:1, 37–64 | DOI | MR | Zbl
[48] V. V. Vedyushkina and V. A. Kibkalo, “Billiard books of low complexity and realization of Liouville foliations of integrable systems”, Chebyshevskii Sb., 23:1 (2022), 53–82 (Russian) | DOI | MR | Zbl
[49] V. V. Fokicheva (Vedyushkina) and A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | MR | Zbl
[50] V. V. Vedyushkina, “The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case”, Moscow Univ. Math. Bull., 75:1 (2020), 42–46 | DOI | MR | Zbl
[51] V. V. Vedyushkina and A. T. Fomenko, “Reducing the degree of integrals of Hamiltonian systems by using billiards”, Dokl. Math., 99:3 (2019), 266–269 | DOI | MR | Zbl
[52] A. V. Bolsinov, V. V. Kozlov, and A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl
[53] T. V. Kozlova, “Systems admitting polynomial integrals of third and forth degrees (the case of elastic reflections)”, Moscow Univ. Mech. Bull., 56:3 (2001), 29–31 | MR | Zbl
[54] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl
[55] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173 | DOI | MR | Zbl
[56] A. V. Bolsinov, P. H. Richter, and A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl
[57] A. T. Fomenko and V. V. Vedyushkina, “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Math., 103:1 (2021), 1–4 | DOI | MR | Zbl
[58] A. T. Fomenko and V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979 | DOI | MR | Zbl
[59] A. T. Fomenko and V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332 | DOI | MR | Zbl
[60] V. V. Kozlov, “Some integrable extensions of Jacobi's problem of geodesics on an ellipsoid”, J. Appl. Math. Mech., 59:1 (1995), 1–7 | DOI | MR | Zbl
[61] V. V. Kozlov and D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | Zbl
[62] M. Bialy and A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp. | DOI | MR | Zbl
[63] A. T. Fomenko, V. V. Vedyushkina, and V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR | Zbl
[64] S. E. Pustovoitov, “Topological analysis of an elliptic billiard in a fourth-order potential field”, Moscow Univ. Math. Bull., 76:5 (2021), 193–205 | DOI | MR | Zbl
[65] V. A. Kibkalo, “Billiards with potential model series of 4-dimensional singularities of integrable systems”, Contemporary problems of mathematics and mechanics, Materials of international conference dedicated to 80-birthday of acad. V. Sadovnichii, v. 2, Moscow, 2019, 563–566
[66] A. T. Fomenko and V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26 | DOI | MR | Zbl
[67] V. V. Vedyushkina, V. A. Kibkalo, and S. E. Pustovoitov, “Realization of focal singularities of integrable systems using billiard books with a Hooke potential field”, Chebyshevskii Sb., 22:5 (2021), 44–57 (Russian) | DOI | MR | Zbl
[68] G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160 | DOI | MR | Zbl
[69] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “Integrable systems. I”, Dynamical systems IV, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 173–280 | DOI | MR | Zbl
[70] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 pp. ; Part II. The geometry and topology of manifolds, Grad. Texts in Math., 104, 1985, xv+430 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[71] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–35 | DOI | MR | Zbl
[72] A. A. Oshemkov, “Morse functions on two-dimensional surfaces. Encoding of singularities”, Proc. Steklov Inst. Math., 205 (1995), 119–127 | MR | Zbl
[73] S. S. Nikolaenko, “Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds”, Sb. Math., 211:8 (2020), 1127–1158 | DOI | MR | Zbl
[74] A. T. Fomenko, “Theory of rough classification of integrable nondegenerate Hamiltonian differential equations on four-dimensional manifolds. Application to classical mechanics”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 305–345 | DOI | MR | Zbl
[75] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl
[76] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl
[77] A. T. Fomenko and H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl
[78] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, 2nd ed., Gordon and Breach Publ., Luxembourg, 1995, xvi+467 pp. | MR | Zbl
[79] V. V. Vedyushkina (Fokicheva), and A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | MR | Zbl
[80] M. P. Kharlamov, Topological analysis of integrable problems of rigid body dynamics, Publishing house of Leningrad State University, Leningrad, 1988, 200 pp. (Russian) | MR
[81] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | MR | Zbl
[82] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | MR | Zbl
[83] N. S. Slavina, “Topological classification of systems of Kovalevskaya–Yehia type”, Sb. Math., 205:1 (2014), 101–155 | DOI | MR | Zbl
[84] A. T. Fomenko and E. O. Kantonistova, “Topological classification of geodesic flows on revolution 2-surfaces with potential”, Continuous and disturbed sytems II. Theory and Applications, Stud. Syst. Decis. Control, 30, Springer, Cham, 2015, 11–27 | DOI | MR | Zbl
[85] D. S. Timonina, “Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., 209:11 (2018), 1644–1676 | DOI | MR | Zbl
[86] E. A. Kudryavtseva and A. A. Oshemkov, “Bifurcations of integrable mechanical systems with magnetic field on surfaces of revolution”, Chebyshevskii Sb., 21:2 (2020), 244–265 (Russian) | DOI | MR | Zbl
[87] E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | MR | Zbl
[88] I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 205:4 (2014), 532–572 | DOI | MR | Zbl
[89] V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $so(4)$ under zero area integral”, Moscow Univ. Math. Bull., 71:3 (2016), 119–123 | DOI | MR | Zbl
[90] V. Kibkalo, “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Lobachevskii J. Math., 39:9 (2018), 1396–1399 | DOI | MR | Zbl
[91] V. A. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 210:5 (2019), 625–662 | DOI | MR | Zbl
[92] M. P. Kharlamov, P. E. Ryabov, and A. Yu. Savushkin, “Topological atlas of the Kowalevski–Sokolov top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65 | DOI | MR | Zbl
[93] V. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(3, 1)$”, Topology Appl., 275 (2020), 107028, 10 pp. | DOI | MR | Zbl
[94] A. V. Borisov and I. S. Mamaev, “Rigid body dynamics in non-Euclidean spaces”, Russ. J. Math. Phys., 23:4 (2016), 431–454 | DOI | MR | Zbl
[95] V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow Univ. Math. Bull., 75:6 (2020), 263–267 | DOI | MR | Zbl
[96] S. L. Tabachnikov, “Outer billiards”, Mat. Prosveshchenie, Ser. 3, 5, Moscow Center for Continuous Mathematical Education, Moscow, 2001, 125–135 (Russian)
[97] A. Glutsyuk and E. Shustin, “On polynomially integrable planar outer billiards and curves with symmetry property”, Math. Ann., 372:3-4 (2018), 1481–1501 | DOI | MR | Zbl
[98] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl
[99] A. Plakhov and V. Roshchina, “Invisibility in billiards is impossible in an infinite number of directions”, J. Dyn. Control Syst., 25:4 (2019), 671–679 | DOI | MR | Zbl
[100] V. Dragović and M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[101] K. Frǎczek and V. Rom-Kedar, “Non-uniform ergodic properties of Hamiltonian flows with impacts”, Ergodic Theory Dynam. Systems, 43:1 (2023), 190–252 | DOI | MR | Zbl
[102] A. M. Abdrakhmanov, “On integrable systems with elastic reflections”, Moscow Univ. Mech. Bull., 45:5 (1990), 14–16 | MR | Zbl
[103] M. B. Tabanov, “Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse”, Chaos, 4:4 (1994), 595–606 | DOI | MR | Zbl
[104] V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290 | DOI | MR | Zbl
[105] A. Glutsyuk, “On commuting billiards in higher-dimensional spaces of constant curvature”, Pacific J. Math., 305:2 (2020), 577–595 | DOI | MR | Zbl
[106] D. Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5271–5284 | DOI | MR | Zbl
[107] D. V. Treschev, “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | MR | Zbl
[108] D. Treschev, “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34 | DOI | MR | Zbl
[109] A. V. Bolsinov, A. P. Veselov, and Y. Ye, “Chaos and integrability in $\operatorname{SL}(2,\mathbb R)$-geometry”, Russian Math. Surveys, 76:4 (2021), 557–586 | DOI | MR | Zbl
[110] A. V. Bolsinov and I. A. Taimanov, “Integrable geodesic flows with positive topological entropy”, Invent. Math., 140:3 (2000), 639–650 | DOI | MR | Zbl
[111] A. V. Bolsinov and I. A. Taimanov, “On an example of an integrable geodesic flow with positive topological entropy”, Russian Math. Surveys, 54:4 (1999), 833–834 | DOI | MR | Zbl
[112] V. V. Vedyushkina, “Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses”, Moscow Univ. Math. Bull., 76:4 (2021), 177–180 | DOI | MR | Zbl
[113] V. V. Vedyushkina and A. T. Fomenko, “Topological obstacles to the realizability of integrable Hamiltonian systems by billiards”, Dokl. Math., 100:2 (2019), 463–466 | DOI | MR | Zbl
[114] G. Haghighatdoost and A. A. Oshemkov, “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 200:6 (2009), 899–921 | DOI | MR | Zbl
[115] D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$”, Sb. Math., 205:8 (2014), 1107–1132 | DOI | MR | Zbl
[116] A. Yu. Moskvin, “Topology of the Liouville foliation on a 2-sphere in the Dullin–Matveev integrable case”, Sb. Math., 199:3 (2008), 411–448 | DOI | MR | Zbl
[117] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | DOI | MR | Zbl
[118] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl
[119] V. S. Matveev, “Square-integrable geodesic flows on the torus and the Klein bottle”, Regul. Chaotic Dyn., 2:1 (1997), 96–102 (Russian) | MR | Zbl
[120] I. K. Babenko and N. N. Nekhoroshev, “On complex structures on two-dimensional tori admitting metrics with nontrivial quadratic integral”, Math. Notes, 58:5 (1995), 1129–1135 | DOI | MR | Zbl
[121] E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505 | DOI | MR | Zbl
[122] V. V. Kalashnikov, “Topological classification of quadratic-integrable geodesic flows on a two-dimensional torus”, Russian Math. Surveys, 50:1 (1995), 200–201 | DOI | MR | Zbl
[123] Nguyen Tien Zung, L. S. Polyakova, and E. N. Selivanova, “Topological classification of integrable geodesic flows on orientable two-dimensional Riemannian manifolds with additional integral depending on momenta linearly or quadratically”, Funct. Anal. Appl., 27:3 (1993), 186–196 | DOI | MR | Zbl
[124] V. V. Vedyushkina and V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664 | DOI | MR | Zbl
[125] V. V. Vedyushkina and S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196 | DOI | MR | Zbl
[126] A. T. Fomenko and V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333 | DOI | MR | Zbl
[127] V. Dragović and M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, J. Math. Sci. (N. Y.), 223:6 (2017), 686–694 | DOI | MR | Zbl
[128] E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci. (N. Y.), 259:5 (2021), 656–675 | DOI | MR | Zbl
[129] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28 | DOI | MR | Zbl
[130] V. V. Vedyushkina and A. I. Skvortsov, “Topology of integrable billiard in an ellipse in the Minkowski plane with the Hooke potential”, Moscow Univ. Math. Bull., 77:1 (2022), 7–19 | DOI | MR | Zbl
[131] V. Dragović and M. Radnović, “Pseudo-integrable billiards and arithmetic dynamics”, J. Mod. Dyn., 8:1 (2014), 109–132 | DOI | MR | Zbl
[132] V. I. Dragović and M. Radnović, “Pseudo-integrable billiards and double reflection nets”, Russian Math. Surveys, 70:1 (2015), 1–31 | DOI | MR | Zbl
[133] V. Dragović and M. Radnović, “Periods of pseudo-integrable billiards”, Arnold Math. J., 1:1 (2015), 69–73 | DOI | MR | Zbl
[134] V. A. Moskvin, “Topology of Liouville bundles of integrable billiards in non-convex domains”, Moscow Univ. Math. Bull., 73:3 (2018), 103–110 | DOI | MR | Zbl
[135] V. A. Moskvin, “Algorithmic construction of two-dimensional singular fibers of atoms of billiards in non-convex domains”, Moscow Univ. Math. Bull., 75:3 (2020), 91–101 | DOI | MR | Zbl
[136] S. V. Bolotin, “First integrals of systems with elastic reflections”, Moscow Univ. Math. Bull., 43:6 (1988), 10–14 | MR | Zbl
[137] V. Dragović, S. Gasiorek, and M. Radnović, “Billiard ordered games and books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150 | DOI | MR | Zbl
[138] I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013 | DOI | MR | Zbl
[139] V. I. Dragovich, “Integrable perturbations of a Birkhoff billiard inside an ellipse”, J. Appl. Math. Mech., 62:1 (1998), 159–162 | DOI | MR | Zbl
[140] S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233 | DOI | MR | Zbl
[141] I. F. Kobtsev, “The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions”, Moscow Univ. Math. Bull., 73:2 (2018), 64–70 | DOI | MR | Zbl
[142] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl
[143] M. Robnik and M. V. Berry, “Classical billiards in magnetic fields”, J. Phys. A, 18:9 (1985), 1361–1378 | DOI | MR | Zbl
[144] T. V. Kozlova, “The non-integrability of a rotating elliptical billiard”, J. Appl. Math. Mech., 62:1 (1998), 81–85 | DOI | MR | Zbl