Smooth DG algebras and twisted tensor product
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 853-880 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The twisted tensor product of DG algebras is studied and sufficient conditions for smoothness of such a product are presented. It is shown that in the case of finite-dimensional DG algebras, applying this operation offers great possibilities for constructing new examples of smooth DG algebras and algebras. In particular, examples are given of families of algebras of finite global dimension with two simple modules that have non-trivial moduli spaces. Bibliography: 24 titles.
Keywords: noncommutative algebraic geometry, differential graded algebras, perfect modules.
@article{RM_2023_78_5_a1,
     author = {D. O. Orlov},
     title = {Smooth {DG} algebras and twisted tensor product},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {853--880},
     year = {2023},
     volume = {78},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/}
}
TY  - JOUR
AU  - D. O. Orlov
TI  - Smooth DG algebras and twisted tensor product
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 853
EP  - 880
VL  - 78
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/
LA  - en
ID  - RM_2023_78_5_a1
ER  - 
%0 Journal Article
%A D. O. Orlov
%T Smooth DG algebras and twisted tensor product
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 853-880
%V 78
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/
%G en
%F RM_2023_78_5_a1
D. O. Orlov. Smooth DG algebras and twisted tensor product. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 853-880. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/

[1] A. I. Bondal and M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 | DOI | MR | Zbl

[2] D. A. Buell, Binary quadratic forms. Classical theory and modern computations, Springer-Verlag, New York, 1989, x+247 pp. | DOI | MR | Zbl

[3] A. Čap, H. Schichl, and J. Vanžura, “On twisted tensor products of algebras”, Comm. Algebra, 23:12 (1995), 4701–4735 | DOI | MR | Zbl

[4] D. V. Dubnov, “On basis algebras of finite homological dimension”, Moscow Univ. Math. Bull., 52:2 (1997), 14–17 | MR | Zbl

[5] A. J. Efimov, “Categorical smooth compactifications and generalized Hodge-to-de Rham degeneration”, Invent. Math., 222:2 (2020), 667–694 | DOI | MR | Zbl

[6] A. Elagin, “Calculating dimension of triangulated categories: path algebras, their tensor powers and orbifold projective lines”, J. Algebra, 592 (2022), 357–401 | DOI | MR | Zbl

[7] P. Gabriel, “Auslander–Reiten sequences and representation-finite algebras”, Representation theory (Carleton Univ., Ottawa, ON 1979), v. I, Lecture Notes in Math., 831, Springer, Berlin, 1980, 1–71 | DOI | MR | Zbl

[8] E. L. Green, “Remarks on projective resolutions”, Representation theory (Carleton Univ., Ottawa, ON 1979), v. II, Lecture Notes in Math., 832, Springer, Berlin, 1980, 259–279 | DOI | MR | Zbl

[9] D. Happel, “A family of algebras with two simple modules and Fibonacci numbers”, Arch. Math. (Basel), 57:2 (1991), 133–139 | DOI | MR | Zbl

[10] D. Happel and D. Zacharia, “Algebras of finite global dimension”, Algebras, quivers and representations, Abel Symp., 8, Springer, Heidelberg, 2013, 95–113 | DOI | MR | Zbl

[11] K. Igusa, “Notes on the no loops conjecture”, J. Pure Appl. Algebra, 69:2 (1990), 161–176 | DOI | MR | Zbl

[12] B. Keller, “Deriving DG categories”, Ann. Sci. École Norm. Sup. (4), 27:1 (1994), 63–102 | DOI | MR | Zbl

[13] E. Kirkman and J. Kuzmanovich, “Algebras with large homological dimensions”, Proc. Amer. Math. Soc., 109:4 (1990), 903–906 | DOI | MR | Zbl

[14] A. Kuznetsov and E. Shinder, Homologically finite-dimensional objects in triangulated categories, 2023 (v1 – 2022), 32 pp., arXiv: 2211.09418

[15] Qunhua Liu and Dong Yang, “Stratifications of algebras with two simple modules”, Forum Math., 28:1 (2016), 175–188 | DOI | MR | Zbl

[16] V. A. Lunts, “Categorical resolution of singularities”, J. Algebra, 323:10 (2010), 2977–3003 | DOI | MR | Zbl

[17] V. A. Lunts and O. M. Schnürer, “Smoothness of equivariant derived categories”, Proc. Lond. Math. Soc. (3), 108:5 (2014), 1226–1276 | DOI | MR | Zbl

[18] F. H. Membrillo-Hernández, “Quasi-hereditary algebras with two simple modules and Fibonacci numbers”, Comm. Algebra, 22:11 (1994), 4499–4509 | DOI | MR | Zbl

[19] D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149 | DOI | MR | Zbl

[20] D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105 | DOI | MR | Zbl

[21] D. O. Orlov, “Derived noncommutative schemes, geometric realizations, and finite dimensional algebras”, Russian Math. Surveys, 73:5 (2018), 865–918 | DOI | MR | Zbl

[22] D. Orlov, “Finite-dimensional differential graded algebras and their geometric realizations”, Adv. Math., 366 (2020), 107096, 33 pp. | DOI | MR | Zbl

[23] D. O. Orlov, “Twisted tensor products of DG algebras”, Russian Math. Surveys, 76:6 (2021), 1146–1148 | DOI | MR | Zbl

[24] R. Rouquier, “Dimensions of triangulated categories”, J. K-Theory, 1:2 (2008), 193–256 | DOI | MR | Zbl