Smooth DG algebras and twisted tensor product
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 853-880
Voir la notice de l'article provenant de la source Math-Net.Ru
The twisted tensor product of DG algebras is studied and sufficient conditions for smoothness of such a product are presented. It is shown that in the case of finite-dimensional DG algebras, applying this operation offers great possibilities for constructing new examples of smooth DG algebras and algebras. In particular, examples are given of families of algebras of finite global dimension with two simple modules that have non-trivial moduli spaces.
Bibliography: 24 titles.
Keywords:
noncommutative algebraic geometry, differential graded algebras, perfect modules.
@article{RM_2023_78_5_a1,
author = {D. O. Orlov},
title = {Smooth {DG} algebras and twisted tensor product},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {853--880},
publisher = {mathdoc},
volume = {78},
number = {5},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/}
}
D. O. Orlov. Smooth DG algebras and twisted tensor product. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 853-880. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/