@article{RM_2023_78_5_a1,
author = {D. O. Orlov},
title = {Smooth {DG} algebras and twisted tensor product},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {853--880},
year = {2023},
volume = {78},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/}
}
D. O. Orlov. Smooth DG algebras and twisted tensor product. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 853-880. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a1/
[1] A. I. Bondal and M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 | DOI | MR | Zbl
[2] D. A. Buell, Binary quadratic forms. Classical theory and modern computations, Springer-Verlag, New York, 1989, x+247 pp. | DOI | MR | Zbl
[3] A. Čap, H. Schichl, and J. Vanžura, “On twisted tensor products of algebras”, Comm. Algebra, 23:12 (1995), 4701–4735 | DOI | MR | Zbl
[4] D. V. Dubnov, “On basis algebras of finite homological dimension”, Moscow Univ. Math. Bull., 52:2 (1997), 14–17 | MR | Zbl
[5] A. J. Efimov, “Categorical smooth compactifications and generalized Hodge-to-de Rham degeneration”, Invent. Math., 222:2 (2020), 667–694 | DOI | MR | Zbl
[6] A. Elagin, “Calculating dimension of triangulated categories: path algebras, their tensor powers and orbifold projective lines”, J. Algebra, 592 (2022), 357–401 | DOI | MR | Zbl
[7] P. Gabriel, “Auslander–Reiten sequences and representation-finite algebras”, Representation theory (Carleton Univ., Ottawa, ON 1979), v. I, Lecture Notes in Math., 831, Springer, Berlin, 1980, 1–71 | DOI | MR | Zbl
[8] E. L. Green, “Remarks on projective resolutions”, Representation theory (Carleton Univ., Ottawa, ON 1979), v. II, Lecture Notes in Math., 832, Springer, Berlin, 1980, 259–279 | DOI | MR | Zbl
[9] D. Happel, “A family of algebras with two simple modules and Fibonacci numbers”, Arch. Math. (Basel), 57:2 (1991), 133–139 | DOI | MR | Zbl
[10] D. Happel and D. Zacharia, “Algebras of finite global dimension”, Algebras, quivers and representations, Abel Symp., 8, Springer, Heidelberg, 2013, 95–113 | DOI | MR | Zbl
[11] K. Igusa, “Notes on the no loops conjecture”, J. Pure Appl. Algebra, 69:2 (1990), 161–176 | DOI | MR | Zbl
[12] B. Keller, “Deriving DG categories”, Ann. Sci. École Norm. Sup. (4), 27:1 (1994), 63–102 | DOI | MR | Zbl
[13] E. Kirkman and J. Kuzmanovich, “Algebras with large homological dimensions”, Proc. Amer. Math. Soc., 109:4 (1990), 903–906 | DOI | MR | Zbl
[14] A. Kuznetsov and E. Shinder, Homologically finite-dimensional objects in triangulated categories, 2023 (v1 – 2022), 32 pp., arXiv: 2211.09418
[15] Qunhua Liu and Dong Yang, “Stratifications of algebras with two simple modules”, Forum Math., 28:1 (2016), 175–188 | DOI | MR | Zbl
[16] V. A. Lunts, “Categorical resolution of singularities”, J. Algebra, 323:10 (2010), 2977–3003 | DOI | MR | Zbl
[17] V. A. Lunts and O. M. Schnürer, “Smoothness of equivariant derived categories”, Proc. Lond. Math. Soc. (3), 108:5 (2014), 1226–1276 | DOI | MR | Zbl
[18] F. H. Membrillo-Hernández, “Quasi-hereditary algebras with two simple modules and Fibonacci numbers”, Comm. Algebra, 22:11 (1994), 4499–4509 | DOI | MR | Zbl
[19] D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149 | DOI | MR | Zbl
[20] D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105 | DOI | MR | Zbl
[21] D. O. Orlov, “Derived noncommutative schemes, geometric realizations, and finite dimensional algebras”, Russian Math. Surveys, 73:5 (2018), 865–918 | DOI | MR | Zbl
[22] D. Orlov, “Finite-dimensional differential graded algebras and their geometric realizations”, Adv. Math., 366 (2020), 107096, 33 pp. | DOI | MR | Zbl
[23] D. O. Orlov, “Twisted tensor products of DG algebras”, Russian Math. Surveys, 76:6 (2021), 1146–1148 | DOI | MR | Zbl
[24] R. Rouquier, “Dimensions of triangulated categories”, J. K-Theory, 1:2 (2008), 193–256 | DOI | MR | Zbl