Mots-clés : simple partial fractions, integer coefficients.
@article{RM_2023_78_5_a0,
author = {P. A. Borodin and K. S. Shklyaev},
title = {Density of quantized approximations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {797--851},
year = {2023},
volume = {78},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a0/}
}
P. A. Borodin; K. S. Shklyaev. Density of quantized approximations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 797-851. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a0/
[1] E. Abakumov, A. Borichev, and K. Fedorovskiy, “Chui's conjecture in Bergman spaces”, Math. Ann., 379:3-4 (2021), 1507–1532 | DOI | MR | Zbl
[2] A. R. Alimov and I. G. Tsar'kov, Geometric approximation theory, Springer Monogr. Math., Springer, Cham, 2021, xxi+508 pp. | DOI | MR | Zbl
[3] È. Aparicio Bernardo, “On some properties of polynomials with integral coefficients and on approximation of functions in the mean by polynomials with integral coefficients”, Izv. Acad. Nauk. Ser. Mat., 19:5 (1955), 303–318 (Russian) | MR | Zbl
[4] W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, 1991, viii+178 pp. | DOI | MR | Zbl
[5] K. E. Bauman, “The dilation factor of the Peano–Hilbert curve”, Math. Notes, 80:5 (2006), 609–620 | DOI | MR | Zbl
[6] P. A. Borodin, “Estimates of the distances to direct lines and rays from the poles of simplest fractions bounded in the norm of $L_p$ on these sets”, Math. Notes, 82:6 (2007), 725–732 | DOI | MR | Zbl
[7] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | MR | Zbl
[8] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570 | DOI | MR | Zbl
[9] P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104 | DOI | MR | Zbl
[10] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | MR | Zbl
[11] P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094 | DOI | MR | Zbl
[12] P. A. Borodin, “Density of sums of shifts of a single vector in sequence spaces”, Proc. Steklov Inst. Math., 303 (2018), 31–35 | DOI | MR | Zbl
[13] P. A. Borodin, “Approximation by sums of the form $\sum_k\lambda_kh(\lambda_kz)$ in the disk”, Math. Notes, 104:1 (2018), 3–9 | DOI | MR | Zbl
[14] P. A. Borodin, “Greedy approximation by arbitrary sets”, Izv. Math., 84:2 (2020), 246–261 | DOI | MR | Zbl
[15] P. A. Borodin, “Example of divergence of a greedy algorithm with respect to an asymmetric dictionary”, Math. Notes, 109:3 (2021), 379–385 | DOI | MR | Zbl
[16] P. A. Borodin, “Approximation by simple partial fractions: universal sets of poles”, Math. Notes, 111:1 (2022), 3–6 | DOI | MR | Zbl
[17] P. A. Borodin and S. V. Konyagin, “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. Math., 44:2 (2018), 163–183 | DOI | MR | Zbl
[18] P. A. Borodin and O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl
[19] P. A. Borodin and O. N. Kosukhin, “Quantitative expressions for the connectedness of sets in ${\mathbb R}^n$”, Math. Notes, 98:5 (2015), 707–713 | DOI | MR | Zbl
[20] P. A. Borodin and K. S. Shklyaev, “Approximation by simple partial fractions in unbounded domains”, Sb. Math., 212:4 (2021), 449–474 | DOI | MR | Zbl
[21] P. G. Casazza, S. J. Dilworth, E. Odell, Th. Schlumprecht, and A. Zsák, “Coefficient quantization for frames in Banach spaces”, J. Math. Anal. Appl., 348:1 (2008), 66–86 | DOI | MR | Zbl
[22] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math. and Math. Phys., 45, Cambridge Univ. Press, New York, 1957, x+166 pp. | MR | Zbl
[23] R. Cauty, “Un exemple de sous-groupe additif de l'espace de Hilbert”, Colloq. Math., 77:1 (1998), 147–162 | DOI | MR | Zbl
[24] C. K. Chui, “A lower bound of fields due to unit point masses”, Amer. Math. Monthly, 78:7 (1971), 779–780 | DOI | MR
[25] C. K. Chui, “On approximation in the Bers spaces”, Proc. Amer. Math. Soc., 40:2 (1973), 438–442 | DOI | MR | Zbl
[26] P. V. Chunaev, “On the extrapolation of analytic functions by sums of the form $\sum_k\lambda_k h(\lambda_k z)$”, Math. Notes, 92:5 (2012), 727–730 | DOI | MR | Zbl
[27] P. Chunaev, “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106 | DOI | MR | Zbl
[28] P. Chunaev and V. Danchenko, “Approximation by amplitude and frequency operators”, J. Approx. Theory, 207 (2016), 1–31 | DOI | MR | Zbl
[29] V. I. Danchenko, “Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 425–440 | DOI | MR | Zbl
[30] V. I. Danchenko, “Estimates of derivatives of simplest fractions and other questions”, Sb. Math., 197:4 (2006), 505–524 | DOI | MR | Zbl
[31] V. I. Danchenko, “Approximation properties of sums of the form $\sum_k\lambda_kh(\lambda_k z)$”, Math. Notes, 83:5 (2008), 587–593 | DOI | MR | Zbl
[32] V. I. Danchenko and D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | MR | Zbl
[33] V. I. Danchenko, M. A. Komarov, and P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41 | DOI | MR | Zbl
[34] I. Daubechies and R. DeVore, “Approximating a bandlimited function using very coarsely quantized data: a family of stable sigma-delta modulators of arbitrary order”, Ann. of Math. (2), 158:2 (2003), 679–710 | DOI | MR | Zbl
[35] J. Diestel, Geometry of Banach spaces – selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–New York, 1975, xi+282 pp. | DOI | MR | Zbl
[36] T. Dobrowolski and J. Grabowski, “Subgroups of Hilbert spaces”, Math. Z., 211:4 (1992), 657–659 | DOI | MR | Zbl
[37] N. A. Dyuzhina, “Density of sums of shifts of a single function in Hardy spaces on the half-plane”, Math. Notes, 106:5 (2019), 711–719 | DOI | MR | Zbl
[38] N. A. Dyuzhina, “Density of derivatives of simple partial fractions in Hardy spaces in the half-plane”, Math. Notes, 109:1 (2021), 46–53 | DOI | MR | Zbl
[39] N. A. Dyuzhina, “Multidimensional analogs of theorems about the density of sums of shifts of a single function”, Math. Notes, 113:5 (2023), 731–735 | DOI | MR | Zbl
[40] J. M. Elkins, “Approximation by polynomials with restricted zeros”, J. Math. Anal. Appl., 25:2 (1969), 321–336 | DOI | MR | Zbl
[41] M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 17:1 (1923), 228–249 | DOI | MR | Zbl
[42] Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, Math. Surveys, 17, Amer. Math. Soc., Providence, RI, 1980, xi+160 pp. | MR | Zbl
[43] V. I. Filippov, “Integer expansion in systems of translates and dilates of a single function”, Izv. Math., 84:4 (2020), 796–806 | DOI | MR | Zbl
[44] V. P. Fonf, “Conditionally convergent series in a uniformly smooth Banach space”, Math. Notes, 11:2 (1972), 129–132 | DOI | MR | Zbl
[45] T. Ganelius, “Sequences of analytic functions and their zeros”, Ark. Mat., 3:1 (1954), 1–50 | DOI | MR | Zbl
[46] A. O. Gel'fond, “On uniform approximations by polynomials with integral rational coefficients”, Uspekhi Mat. Nauk, 10:1(63) (1955), 41–65 (Russian) | MR | Zbl
[47] J. Grabowski, “Homotopically non-trivial additive subgroups of Hilbert spaces”, Proc. Amer. Math. Soc., 127:5 (1999), 1563–1565 | DOI | MR | Zbl
[48] B. S. Kashin and A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | DOI | MR | Zbl
[49] M. A. Komarov, “Best approximation rate of constants by simple partial fractions and Chebyshev alternance”, Math. Notes, 97:5 (2015), 725–737 | DOI | MR | Zbl
[50] M. A. Komarov, “Approximation to constant functions by electrostatic fields due to electrons and positrons”, Lobachevskii J. Math., 40:1 (2019), 79–84 | DOI | MR | Zbl
[51] M. A. Komarov, “A lower bound for the $L_2[-1,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle”, Probl. Anal. Issues Anal., 8(26):2 (2019), 67–72 | DOI | MR | Zbl
[52] M. A. Komarov, “On the rate of approximation in the unit disc of $H^1$-functions by logarithmic derivatives of polynomials with zeros on the boundary”, Izv. Math., 84:3 (2020), 437–448 | DOI | MR | Zbl
[53] M. A. Komarov, “Extremal properties of logarithmic derivatives of polynomials”, J. Math. Sci. (N. Y.), 250:1 (2020), 1–9 | DOI | MR | Zbl
[54] M. A. Komarov, “Rational approximations of Lipschitz functions from the Hardy class on the line”, Probl. Anal. Issues Anal., 10(28):2 (2021), 54–66 | DOI | MR | Zbl
[55] M. A. Komarov, “A Newman type bound for $L_p[-1,1]$-means of the logarithmic derivative of polynomials having all zeros on the unit circle”, Constr. Approx., 2023, Publ. online | DOI
[56] S. V. Konyagin, “On points of existence of elements of best approximation by sets in reflexive spaces”, East J. Approx., 1:1 (1995), 141–142 | MR | Zbl
[57] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:3 (1964), 403–410 | DOI | MR | Zbl
[58] O. N. Kosukhin, “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl
[59] Ka-Sing Lau, “Almost Chebyshev subsets in reflexive Banach spaces”, Indiana Univ. Math. J., 27:5 (1978), 791–795 | DOI | MR | Zbl
[60] M. A. Lawrentjew and B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967, x+846 pp. | MR | Zbl
[61] J. Lindenstrauss, “On the modulus of smoothness and divergent series in Banach spaces”, Michigan Math. J., 10:3 (1963), 241–252 | DOI | MR | Zbl
[62] G. G. Lorentz, M. v. Golitschek, and Yu. Makovoz, Constructive approximation. Advanced problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996, xii+649 pp. | MR | Zbl
[63] G. R. MacLane, “Polynomials with zeros on a rectifiable Jordan curve”, Duke Math. J., 16:3 (1949), 461–477 | DOI | MR | Zbl
[64] G. R. MacLane, “Limits of rational functions”, Pacific J. Math., 6:1 (1956), 111–116 | DOI | MR | Zbl
[65] D. J. Newman, “A lower bound for an area integral”, Amer. Math. Monthly, 79:9 (1972), 1015–1016 | DOI | MR | Zbl
[66] V. Nitica and A. Török, “On a semigroup problem”, Discrete Contin. Dyn. Syst. Ser. S, 12:8 (2019), 2365–2377 | DOI | MR | Zbl
[67] Y. Okada, “On approximate polynomials with integral coefficients only”, Tôhoku Math. J., 23 (1924), 26–35 | Zbl
[68] D. T. Piele, “Asymptotically neutral families in $E^3$”, SIAM J. Math. Anal., 4:2 (1973), 260–268 | DOI | MR | Zbl
[69] D. T. Piele, “An approximation of harmonic functions in $E^3$ by potentials of unit charges”, SIAM J. Math. Anal., 5:4 (1974), 563–568 | DOI | MR | Zbl
[70] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | MR | Zbl
[71] Q. I. Rahman, “On a property of rational functions. II”, Proc. Amer. Math. Soc., 40:1 (1973), 143–145 | DOI | MR | Zbl
[72] Q. I. Rahman and P. Turán, “On a property of rational functions”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 16 (1973), 37–45 | MR | Zbl
[73] S. G. Révész, “Note on a problem of Q. I. Rahman and P. Turán”, Acta Math. Hung., 44:3-4 (1984), 367–377 | DOI | MR | Zbl
[74] K. S. Shklyaev, “Density of the semigroup generated by curves through zero in a Banach space”, Math. Notes, 111:2 (2022), 324–328 | DOI | MR | Zbl
[75] S. M. Tabatabaie, “The problem of density on $L^2(G)$”, Acta Math. Hungar., 150:2 (2016), 339–345 | DOI | MR | Zbl
[76] V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp. | DOI | MR | Zbl
[77] R. M. Trigub, “Approximation of functions with Diophantine conditions by polynomials with integral coefficients”, Metricheskie Voprosy Teorii Funkts. Otobrazhenii, 2, Naukova Dumka, Kiev, 1971, 267–333 (Russian) | MR | Zbl
[78] S. Troyanski, “Conditionally convegent series and certain $F$-spaces”, Teor. Funktsii Funkts. Anal. Prilozh., 5, Publishing house of Khar'kov University, Khar'kov, 1967, 102–107 (Russian) | MR | Zbl
[79] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33:1 (1932), 1–100 | DOI | MR | Zbl