Density of quantized approximations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 797-851

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a review of known results and proofs of new results on conditions on a set $M$ in a Banach space $X$ that are necessary or sufficient for the additive semigroup $R(M)=\{x_1+\dots+x_n\colon x_k\in M,\ n\in {\mathbb N}\}$ to be dense in $X$. We prove, in particular, that if $M$ is a rectifiable curve in a uniformly smooth real space $X$, and $M$ does not lie entirely in any closed half-space, then $R(M)$ is dense in $X$. We present known and new results on the approximation by simple partial fractions (logarithmic derivatives of polynomials) in various spaces of functions of a complex variable. Meanwhile, some well-known theorems, in particular, Korevaar's theorem, are derived from new general results on the density of a semigroup. We also study approximation by sums of shifts of one function, which are a natural generalization of simple partial fractions. Bibliography: 79 titles.
Keywords: approximation, additive semigroup, density, Banach space, shifts
Mots-clés : simple partial fractions, integer coefficients.
@article{RM_2023_78_5_a0,
     author = {P. A. Borodin and K. S. Shklyaev},
     title = {Density of quantized approximations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {797--851},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_5_a0/}
}
TY  - JOUR
AU  - P. A. Borodin
AU  - K. S. Shklyaev
TI  - Density of quantized approximations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 797
EP  - 851
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_5_a0/
LA  - en
ID  - RM_2023_78_5_a0
ER  - 
%0 Journal Article
%A P. A. Borodin
%A K. S. Shklyaev
%T Density of quantized approximations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 797-851
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2023_78_5_a0/
%G en
%F RM_2023_78_5_a0
P. A. Borodin; K. S. Shklyaev. Density of quantized approximations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 5, pp. 797-851. http://geodesic.mathdoc.fr/item/RM_2023_78_5_a0/