Picard group of a connected affine algebraic group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 4, pp. 794-796 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2023_78_4_a7,
     author = {V. L. Popov},
     title = {Picard group of a connected affine algebraic group},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {794--796},
     year = {2023},
     volume = {78},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_4_a7/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Picard group of a connected affine algebraic group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 794
EP  - 796
VL  - 78
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_4_a7/
LA  - en
ID  - RM_2023_78_4_a7
ER  - 
%0 Journal Article
%A V. L. Popov
%T Picard group of a connected affine algebraic group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 794-796
%V 78
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2023_78_4_a7/
%G en
%F RM_2023_78_4_a7
V. L. Popov. Picard group of a connected affine algebraic group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 4, pp. 794-796. http://geodesic.mathdoc.fr/item/RM_2023_78_4_a7/

[1] A. Borel, Linear algebraic groups, Grad. Texts in Math., 126, 2nd ed., Springer-Verlag, New York, 1991, xii+288 СЃ. | DOI | MR | Zbl

[2] V. L. Popov, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl

[3] I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. ; v. 2, Schemes and complex manifolds, 3rd ed., 2013, xiv+262 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[4] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | Zbl

[5] A. Grothendieck, Séminaire C. Chevalley, t. 3, Anneaux de Chow et applications, 2e année, Secrétariat mathématique, Paris, 1958, Exp. No. 5, , 29 pp. | MR | Zbl

[6] V. L. Popov, “Group varieties and group structures”, Izv. Math., 86:5 (2022), 903–924 | DOI | MR

[7] V. L. Popov, Picard group of connected affine algebraic group, 2023, 3 pp., arXiv: 2302.13374v1