Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 4, pp. 788-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2023_78_4_a5,
     author = {S. Yu. Dobrokhotov and S. B. Levin and A. A. Tolchennikov},
     title = {Keplerian orbits and global asymptotic solution in the form of an {Airy} function for the scattering problem on a repulsive {Coulomb} potential},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {788--790},
     year = {2023},
     volume = {78},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_4_a5/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - S. B. Levin
AU  - A. A. Tolchennikov
TI  - Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 788
EP  - 790
VL  - 78
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_4_a5/
LA  - en
ID  - RM_2023_78_4_a5
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A S. B. Levin
%A A. A. Tolchennikov
%T Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 788-790
%V 78
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2023_78_4_a5/
%G en
%F RM_2023_78_4_a5
S. Yu. Dobrokhotov; S. B. Levin; A. A. Tolchennikov. Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 4, pp. 788-790. http://geodesic.mathdoc.fr/item/RM_2023_78_4_a5/

[1] L. D. Faddeev and S. P. Merkuriev, Quantum scattering theory for several particle systems, Math. Phys. Appl. Math., 11, Kluwer Acad. Publ., Dordrecht, 1993, xiv+404 pp. | DOI | MR | Zbl

[2] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 1, Mechanics, 2d ed., Pergamon Press, Oxford, 1987, 169 pp. | MR

[3] V. P. Maslov and M. V. Fedoriuk, Semi-classical approximation in quantum mechanics, Math. Phys. Appl. Math., 7, D. Reidel Publishing Co., Dordrecht–Boston, Mass., 1981, ix+301 pp. | MR | Zbl

[4] B. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach Sci. Publ., New York, 1989, viii+498 pp. | MR | Zbl

[5] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, Theoret. and Math. Phys., 201:3 (2019), 1742–1770 | DOI | MR | Zbl

[6] S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. I. Shafarevich, Russian Math. Surveys, 76:5 (2021), 745–819 | DOI | MR | Zbl