Attractors. Then and now
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 4, pp. 635-777 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is based on a number of mini-courses taught by the author at the University of Surrey (UK) and Lanzhou University (China). It discusses the classical and modern results of the theory of attractors for dissipative PDEs, including attractors for autonomous and non-autonomous equations, dynamical systems in general topological spaces, various types of trajectory, pullback and random attractors, exponential attractors, determining functionals and inertial manifolds, as well as the dimension theory for the classes of attractors mentioned above. The theoretical results are illustrated by a number of clarifying examples and counterexamples. Bibliography: 248 titles.
Keywords: attractors, inertial manifolds, determining functionals, finite-dimensional reduction.
Mots-clés : dissipative PDEs
@article{RM_2023_78_4_a1,
     author = {S. V. Zelik},
     title = {Attractors. {Then} and now},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {635--777},
     year = {2023},
     volume = {78},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_4_a1/}
}
TY  - JOUR
AU  - S. V. Zelik
TI  - Attractors. Then and now
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 635
EP  - 777
VL  - 78
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_4_a1/
LA  - en
ID  - RM_2023_78_4_a1
ER  - 
%0 Journal Article
%A S. V. Zelik
%T Attractors. Then and now
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 635-777
%V 78
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2023_78_4_a1/
%G en
%F RM_2023_78_4_a1
S. V. Zelik. Attractors. Then and now. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 4, pp. 635-777. http://geodesic.mathdoc.fr/item/RM_2023_78_4_a1/

[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shil'nikov, “On the origin and structure of the Lorenz attractor”, Soviet Phys. Dokl., 22 (1977), 253–255 | MR | Zbl

[2] M. Anikushin, “Frequency theorem for parabolic equations and its relation to inertial manifolds theory”, J. Math. Anal. Appl., 505:1 (2022), 125454, 23 pp. | DOI | MR | Zbl

[3] L. Arnold, Random dynamical systems, Springer Monogr. Math., Springer-Verlag, New York, 1998, xvi+586 pp. | DOI | MR | Zbl

[4] A. Azouani, E. Olson, and E. S. Titi, “Continuous data assimilation using general interpolant observables”, J. Nonlinear Sci., 24:2 (2014), 277–304 | DOI | MR | Zbl

[5] A. Azouani and E. S. Titi, “Feedback control of nonlinear dissipative systems by finite determining parameters – a reaction-diffusion paradigm”, Evol. Equ. Control Theory, 3:4 (2014), 579–594 | DOI | MR | Zbl

[6] A. V. Babin, “Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 207–223 | DOI | MR | Zbl

[7] A. V. Babin, “Inertial manifolds for travelling-wave solutions of reaction-diffusion systems”, Comm. Pure Appl. Math., 48:2 (1995), 167–198 | DOI | MR | Zbl

[8] A. V. Babin, “Global attractors in PDE”, Handbook of dynamical systems, Ch. 14, v. 1B, Elsevier B. V., Amsterdam, 2006, 983–1085 | DOI | MR | Zbl

[9] A. Babin and B. Nicolaenko, “Exponential attractors of reaction-diffusion systems in an unbounded domain”, J. Dynam. Differential Equations, 7:4 (1995), 567–590 | DOI | MR | Zbl

[10] A. V. Babin and M. I. Vishik, “Regular attractors of semigroups and evolution equations”, J. Math. Pures Appl. (9), 62:4 (1983), 441–491 | MR | Zbl

[11] A. V. Babin and M. I. Vishik, “Maximal attractors of semigroups corresponding to evolution differential equations”, Math. USSR-Sb., 54:2 (1986), 387–408 | DOI | MR | Zbl

[12] A. V. Babin and M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | DOI | MR | Zbl

[13] J. M. Ball, “On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations”, J. Differential Equations, 27:2 (1978), 224–265 | DOI | MR | Zbl

[14] J. M. Ball, “Global attractors for damped semilinear wave equations”, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 31–52 | DOI | MR | Zbl

[15] B. Bilgin, V. Kalantarov, and S. Zelik, “Preventing blow up by convective terms in dissipative PDE's”, J. Math. Fluid Mech., 18:3 (2016), 463–479 | DOI | MR | Zbl

[16] J. E. Billotti and J. P. LaSalle, “Dissipative periodic processes”, Bull. Amer. Math. Soc., 77 (1971), 1082–1088 | DOI | MR | Zbl

[17] A. È. Biryuk, “Spectral properties of solutions of the Burgers equation with small dissipation”, Funct. Anal. Appl., 35:1 (2001), 1–12 | DOI | MR | Zbl

[18] M. D. Blair, H. F. Smith, and C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26:5 (2009), 1817–1829 | DOI | MR | Zbl

[19] M. A. Blinchevskaya and Yu. S. Ilyashenko, “Estimate for the entropy dimension of the maximal attractor for $k$-contracting systems in an infinite-dimensional space”, Russ. J. Math. Phys., 6:1 (1999), 20–26 | MR | Zbl

[20] T. Buckmaster and V. Vicol, “Nonuniqueness of weak solutions to the Navier–Stokes equation”, Ann. of Math. (2), 189:1 (2019), 101–144 | DOI | MR | Zbl

[21] C. J. Budd, V. Rottschäfer, and J. F. Williams, “Multibump, blow-up, self-similar solutions of the complex Ginzburg–Landau equation”, SIAM J. Appl. Dyn. Syst., 4:3 (2005), 649–678 | DOI | MR | Zbl

[22] J. M. Burgers, “A mathematical model illustrating the theory of turbulence”, Advances in applied mechanics, v. 1, Academic Press, Inc., New York, 1948, 171–199 | DOI | MR | Zbl

[23] N. Burq, G. Lebeau, and F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845 | DOI | MR | Zbl

[24] M. Callaway, Thai Son Doan, J. S. W. Lamb, and M. Rasmussen, “The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with additive noise”, Ann. Inst. Henri Poincaré Probab. Stat., 53:4 (2017), 1548–1574 | DOI | MR | Zbl

[25] A. Calsina, X. Mora, and J. Sola-Morales, “The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit”, J. Differential Equations, 102:2 (1993), 244–304 | DOI | MR | Zbl

[26] A. N. Carvalho and J. A. Langa, “An extension of the concept of gradient semigroups which is stable under perturbation”, J. Differential Equations, 246:7 (2009), 2646–2668 | DOI | MR | Zbl

[27] A. N. Carvalho, J. A. Langa, and J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Appl. Math. Sci., 182, Springer, New York, 2013, xxxvi+409 pp. | DOI | MR | Zbl

[28] A. N. de Carvalho and S. Sonner, “Pullback exponential attractors for evolution processes in Banach spaces: theoretical results”, Commun. Pure Appl. Anal., 12:6 (2013), 3047–3071 | DOI | MR | Zbl

[29] N. Chafee and E. F. Infante, “A bifurcation problem for a nonlinear partial differential equation of parabolic type”, Appl. Anal., 4 (1974), 17–37 | DOI | MR | Zbl

[30] Qingquan Chang, Dandan Li, Chunyou Sun, and S. Zelik, “Deterministic and random attractors for a wave equation with sign changing damping”, Izv. Ross. Akad. Nauk Ser. Mat., 87:1 (2023), 154–199 | DOI

[31] V. V. Chepyzhov, A. Yu. Goritsky, and M. I. Vishik, “Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation”, Russ. J. Math. Phys., 12:1 (2005), 17–39 | MR | Zbl

[32] V. V. Chepyzhov and A. A. Ilyin, “On the fractal dimension of invariant sets: applications to Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 117–135 | DOI | MR | Zbl

[33] V. V. Chepyzhov, A. Kostianko, and S. Zelik, “Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations”, Discrete Contin. Dyn. Syst. Ser. B, 24:3 (2019), 1115–1142 | DOI | MR | Zbl

[34] V. V. Chepyzhov, E. S. Titi, and M. I. Vishik, “On the convergence of solutions of the Leray-$\alpha$ model to the trajectory attractor of the 3D Navier–Stokes system”, Discrete Contin. Dyn. Syst., 17:3 (2007), 481–500 | DOI | MR | Zbl

[35] V. Chepyzhov and M. Vishik, “A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076 | DOI | MR | Zbl

[36] V. V. Chepyzhov and M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl

[37] V. V. Chepyzhov and M. I. Vishik, “Attractors of non-autonomous evolution equations with translation-compact symbols”, Partial differential operators and mathematical physics (Holzhau 1994), Oper. Theory Adv. Appl., 78, Birkhäuser Verlag, Basel, 1995, 49–60 | MR | Zbl

[38] V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl

[39] V. V. Chepyzhov, M. I. Vishik, and S. V. Zelik, “Strong trajectory attractors for dissipative Euler equations”, J. Math. Pures Appl. (9), 96:4 (2011), 395–407 | DOI | MR | Zbl

[40] Shui-Nee Chow, Kening Lu, and G. R. Sell, “Smoothness of inertial manifolds”, J. Math. Anal. Appl., 169:1 (1992), 283–312 | DOI | MR | Zbl

[41] I. D. Chueshov, “Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems”, Russian Math. Surveys, 53:4 (1998), 731–776 | DOI | DOI | MR | Zbl

[42] I. Chueshov, Monotone random systems theory and applications, Lecture Notes in Math., 1779, Springer-Verlag, Berlin, 2002, viii+234 pp. | DOI | MR | Zbl

[43] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative systems, ACTA, Kharkiv, 2002, 418 pp. | MR | Zbl

[44] I. Chueshov, Dynamics of quasi-stable dissipative systems, Universitext, Springer, Cham, 2015, xvii+390 pp. | DOI | MR | Zbl

[45] Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn, and B. de Pagter, One-parameter semigroups, CWI Monogr., 5, North-Holland Publishing Co., Amsterdam, 1987, x+312 pp. | MR | Zbl

[46] B. Cockburn, D. A. Jones, and E. S. Titi, “Determining degrees of freedom for nonlinear dissipative equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:5 (1995), 563–568 | MR | Zbl

[47] B. Cockburn, D. Jones, and E. Titi, “Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems”, Math. Comp., 97:219 (1997), 1073–1087 | DOI | MR | Zbl

[48] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, RI, 1978, iii+89 pp. | MR | Zbl

[49] P. Constantin and C. Foias, “Global Lyapunov exponents, Kaplan–Yorke formulae and the dimension of the attractors for 2D Navier–Stokes equations”, Comm. Pure Appl. Math., 38:1 (1985), 1–27 | DOI | MR | Zbl

[50] M. Conti, V. Pata, and R. Temam, “Attractors for processes on time-dependent spaces. Applications to wave equations”, J. Differential Equations, 255:6 (2013), 1254–1277 | DOI | MR | Zbl

[51] H. Crauel, “Random point attractors versus random set attractors”, J. London Math. Soc. (2), 63:2 (2001), 413–427 | DOI | MR | Zbl

[52] H. Crauel and F. Flandoli, “Attractors for random dynamical systems”, Probab. Theory Related Fields, 100:3 (1994), 365–393 | DOI | MR | Zbl

[53] H. Crauel and F. Flandoli, “Additive noise destroys a pitchfork bifurcation”, J. Dynam. Differential Equations, 10:2 (1998), 259–274 | DOI | MR | Zbl

[54] H. Crauel and F. Flandoli, “Hausdorff dimension of invariant sets for random dynamical systems”, J. Dynam. Differential Equations, 10:3 (1998), 449–474 | DOI | MR | Zbl

[55] H. Crauel and P. E. Kloeden, “Nonautonomous and random attractors”, Jahresber. Dtsch. Math.-Ver., 117:3 (2015), 173–206 | DOI | MR | Zbl

[56] H. Crauel and M. Scheutzow, “Minimal random attractors”, J. Differential Equations, 265:2 (2018), 702–718 | DOI | MR | Zbl

[57] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1992, xviii+454 pp. | DOI | MR | Zbl

[58] A. Debussche, “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl. (9), 77:10 (1998), 967–988 | DOI | MR | Zbl

[59] E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993, xvi+387 pp. | DOI | MR | Zbl

[60] A. Douady and J. Oesterlé, “Dimension de Hausdorff des attracteurs”, C. R. Acad. Sci. Paris Sér. A-B, 290:24 (1980), A1135–A1138 | MR | Zbl

[61] J.-P. Eckmann and J. Rougemont, “Coarsening by Ginzburg–Landau dynamics”, Comm. Math. Phys., 199:2 (1998), 441–470 | DOI | MR | Zbl

[62] J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors”, Rev. Modern Phys., 57:3 (1985), 617–656 | DOI | MR | Zbl

[63] A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractors for dissipative evolution equations, RAM Res. Appl. Math., 37, Masson, Paris; John Wiley Sons, Ltd., Chichester, 1994, viii+183 pp. | MR | Zbl

[64] by A. Eden, S. V. Zelik, and V. K. Kalantarov “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226 | DOI | MR | Zbl

[65] M. Efendiev, A. Miranville, and S. Zelik, “Exponential attractors for a nonlinear reaction-diffusion system in $\mathbf R^3$”, C. R. Acad. Sci. Paris Sér. I Math., 330:8 (2000), 713–718 | DOI | MR | Zbl

[66] M. Efendiev, A. Miranville, and S. Zelik, “Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system”, Math. Nachr., 248–249:1 (2003), 72–96 | DOI | MR | Zbl

[67] M. Efendiev, A. Miranville, and S. Zelik, “Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460:2044 (2004), 1107–1129 | DOI | MR | Zbl

[68] M. Efendiev, A. Miranville, and S. Zelik, “Exponential attractors for evolution equations”, Evolution equations and asymptotic analysis of solutions, RIMS Kôkyûroku, 1436, RIMS, Kyoto Univ., Kyoto, 2005, 45–65

[69] M. Efendiev and S. Zelik, “Finite- and infinite-dimensional attractors for porous media equations”, Proc. Lond. Math. Soc. (3), 96:1 (2008), 51–77 | DOI | MR | Zbl

[70] M. Efendiev and S. Zelik, “Finite-dimensional attractors and exponential attractors for degenerate doubly nonlinear equations”, Math. Methods Appl. Sci., 32:13 (2009), 1638–1668 | DOI | MR | Zbl

[71] M. Efendiev, S. Zelik, and A. Miranville, “Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems”, Proc. Roy. Soc. Edinburgh Sect. A, 135:4 (2005), 703–730 | DOI | MR | Zbl

[72] P. Fabrie, C. Galusinski, A. Miranville, and S. Zelik, “Uniform exponential attractors for a singularly perturbed damped wave equation”, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 211–238 | DOI | MR | Zbl

[73] B. Fiedler and C. Rocha, “Connectivity and design of planar global attractors of Sturm type. III. Small and platonic examples”, J. Dynam. Differential Equations, 22:2 (2010), 121–162 | DOI | MR | Zbl

[74] B. Fiedler, A. Scheel, and M. I. Vishik, “Large patterns of elliptic systems in infinite cylinders”, J. Math. Pures Appl. (9), 77:9 (1998), 879–907 | DOI | MR | Zbl

[75] C. Foiaş and G. Prodi, “Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension $2$”, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34 | MR | Zbl

[76] C. Foias, G. R. Sell, and R. Temam, “Inertial manifolds for nonlinear evolutionary equations”, J. Differential Equations, 73:2 (1988), 309–353 | DOI | MR | Zbl

[77] C. Foias and R. Temam, “Determination of the solutions of the Navier–Stokes equations by a set of nodal values”, Math. Comp., 43:167 (1984), 117–133 | DOI | MR | Zbl

[78] C. Foias and E. S. Titi, “Determining nodes, finite difference schemes and inertial manifolds”, Nonlinearity, 4:1 (1991), 135–153 | DOI | MR | Zbl

[79] R. L. Frank, D. Hundertmark, M. Jex, and Phan Thành Nam, “The Lieb–Thirring inequality revisited”, J. Eur. Math. Soc. (JEMS), 23:8 (2021), 2583–2600 | DOI | MR | Zbl

[80] R. L. Frank, A. Laptev, and T. Weidl, Schrödinger operators: eigenvalues and Lieb–Thirring inequalities, Cambridge Stud. Adv. Math., 200, Cambridge Univ. Press, Cambridge, 2023, xiii+507 pp. | DOI | MR | Zbl

[81] U. Frisch, Turbulence. The legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995, xiv+296 pp. | DOI | MR | Zbl

[82] C. G. Gal and Yanqiu Guo, “Inertial manifolds for the hyperviscous Navier–Stokes equations”, J. Differential Equations, 265:9 (2018), 4335–4374 | DOI | MR | Zbl

[83] M. J. Garrido-Atienza and B. Schmalfuß, “Ergodicity of the infinite dimensional fractional Brownian motion”, J. Dynam. Differential Equations, 23:3 (2011), 671–681 | DOI | MR | Zbl

[84] S. Gatti, A. Miranville, V. Pata, and S. Zelik, “Continuous families of exponential attractors for singularly perturbed equations with memory”, Proc. Roy. Soc. Edinburgh Sect. A, 140:2 (2010), 329–366 | DOI | MR | Zbl

[85] J.-M. Ghidaglia, “Finite-dimensional behavior for weakly damped driven Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5:4 (1988), 365–405 | DOI | MR | Zbl

[86] A. Giraldo, M. A. Morón, F. R. Ruiz Del Portal, and J. M. R. Sanjurjo, “Shape of global attractors in topological spaces”, Nonlinear Anal., 60:5 (2005), 837–847 | DOI | MR | Zbl

[87] S. V. Gonchenkoab, M. N. Kaynov, A. O. Kazakov, and D. V. Turaev, “On methods for verification of the pseudohyperbolicity of strange attractors”, Izv. Vyssh. Uchebn. Zaved. Mat. Prikl. Nelin. Dinam., 29:1 (2021), 160–185 (Russian) | DOI

[88] S. V. Gonchenko and D. V. Turaev, “On three types of dynamics and the notion of attractor”, Proc. Steklov Inst. Math., 297 (2017), 116–137 | DOI | MR | Zbl

[89] J. Goodman, “Stability of the Kuramoto–Sivashinsky and related systems”, Comm. Pure Appl. Math., 47:3 (1994), 293–306 | DOI | MR | Zbl

[90] M. Grasselli, G. Schimperna, and S. Zelik, “Trajectory and smooth attractors for Cahn–Hilliard equations with inertial term”, Nonlinearity, 23:3 (2010), 707–737 | DOI | MR | Zbl

[91] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, Springer-Verlag, New York, 1983, xvi+453 pp. | DOI | MR | Zbl

[92] J. Guckenheimer and R. F. Williams, “Structural stability of Lorenz attractors”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59–72 | DOI | MR | Zbl

[93] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | DOI | MR | Zbl

[94] J. K. Hale, “Stability and gradient dynamical systems”, Rev. Mat. Complut., 17:1 (2004), 7–57 | DOI | MR | Zbl

[95] J. K. Hale and G. Raugel, “Lower semicontinuity of attractors of gradient systems and applications”, Ann. Mat. Pura Appl. (4), 154:1 (1989), 281–326 | DOI | MR | Zbl

[96] A. Haraux, Systèmes dynamiques dissipatifs et applications, Rech. Math. Appl., 17, Masson, Paris, 1991, xii+132 pp. | MR | Zbl

[97] D. B. Henry, “Some infinite-dimensional Morse–Smale systems defined by parabolic partial differential equations”, J. Differential Equations, 59:2 (1985), 165–205 | DOI | MR | Zbl

[98] M. A. Herrero and J. J. L. Velázquez, “A blow-up mechanism for a chemotaxis model”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:4 (1997), 633–683 | MR | Zbl

[99] C. Hipp, “Convergence rates of the strong law for stationary mixing sequences”, Z. Wahrsch. Verw. Gebiete, 49:1 (1979), 49–62 | DOI | MR | Zbl

[100] M. W. Hirsch, H. L. Smith, and Xiao-Qiang Zhao, “Chain transitivity, attractivity, and strong repellors for semidynamical systems”, J. Dynam. Differential Equations, 13 (2001), 107–131 | DOI | MR | Zbl

[101] L. T. Hoang, E. J. Olson, and J. C. Robinson, “On the continuity of global attractors”, Proc. Amer. Math. Soc., 143:10 (2015), 4389–4395 | DOI | MR | Zbl

[102] H. Hogbe-Nlend, Bornologies and functional analysis. Introductory course on the theory of duality topology-bornology and its use in functional analysis, North-Holland Math. Stud., 26, Notas de Matemática, No. 62, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977, xii+144 pp. | MR | Zbl

[103] M. Holland and I. Melbourne, “Central limit theorems and invariance principles for Lorenz attractors”, J. Lond. Math. Soc. (2), 76:2 (2007), 345–364 | DOI | MR | Zbl

[104] E. Hopf, “Über die Anfgangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4:1-6 (1950), 213–231 | DOI | MR | Zbl

[105] B. R. Hunt, “Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors”, Nonlinearity, 9:4 (1996), 845–852 | DOI | MR | Zbl

[106] B. R. Hunt and V. Yu. Kaloshin, “Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces”, Nonlinearity, 12:5 (1999), 1263–1275 | DOI | MR | Zbl

[107] Yu. S. Il'yashenko, “On the dimension of attractors of $k$-contracting systems in an infinite-dimensional space”, Moscow Univ. Math. Bull., 38:3 (1983), 61–69 | MR | Zbl

[108] Yu. S. Ilyashenko, “Multidimensional bony attractors”, Funct. Anal. Appl., 46:4 (2012), 239–248 | DOI | MR | Zbl

[109] A. Ilyin, A. Kostianko, and S. Zelik, “Sharp upper and lower bounds of the attractor dimension for 3D damped Euler–Bardina equations”, Phys. D, 432 (2022), 133156, 13 pp. | DOI | MR | Zbl

[110] A. A. Ilyin and S. Zelik, “Sharp dimension estimates of the attractor of the damped 2D Euler–Bardina equations”, Partial differential equations, spectral theory, and mathematical physics. The Ari Laptev anniversary volume, EMS Ser. Congr. Rep., EMS Press, Berlin, 2021, 209–229 | DOI | MR | Zbl

[111] N. Ishimura and I. Ohnishi, “Inertial manifolds for Burgers' original model system of turbulence”, Appl. Math. Lett., 7:3 (1994), 33–37 | DOI | MR | Zbl

[112] A. V. Ivanov, “Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order”, Proc. Steklov Inst. Math., 160 (1984), 1–288 | MR | Zbl

[113] A. G. Kachurovskii, “The rate of convergence in ergodic theorems”, Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | MR | Zbl

[114] V. Kalantarov, A. Kostianko, and S. Zelik, “Determining functionals and finite-dimensional reduction for dissipative PDEs revisited”, J. Differential Equations, 345 (2023), 78–103 | DOI | MR | Zbl

[115] V. Kalantarov, A. Savostianov, and S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincaré, 17:9 (2016), 2555–2584 | DOI | MR | Zbl

[116] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[117] R. Khasminskii, Stochastic stability of differential equations, Stoch. Model. Appl. Probab., 66, 2nd ed., Springer, Heidelberg, 2012, xviii+339 pp. | DOI | MR | Zbl

[118] Y. Kifer, Random perturbations of dynamical systems, Progr. Probab. Statist., 16, Birkhäuser Boston, Inc., Boston, MA, 1988, vi+294 pp. | DOI | MR | Zbl

[119] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differential Equations, 45:1 (1982), 113–127 | DOI | MR | Zbl

[120] P. E. Kloeden and J. A. Langa, “Flattening, squeezing and the existence of random attractors”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2077 (2007), 163–181 | DOI | MR | Zbl

[121] P. E. Kloeden and M. Rasmussen, Nonautonomous dynamical systems, Math. Surveys Monogr., 176, Amer. Math. Soc., Providence, RI, 2011, viii+264 pp. | DOI | MR | Zbl

[122] P. E. Kloeden and J. Valero, “The Kneser property of the weak solutions of the three dimensional Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 28:1 (2010), 161–179 | DOI | MR | Zbl

[123] P. E. Kloeden and Meihua Yang, An introduction to nonautonomous dynamical systems and their attractors, Interdiscip. Math. Sci., 21, World Sci. Publ., Hackensack, NJ, 2021, xii+144 pp. | DOI | MR | Zbl

[124] N. Koksch, “Almost sharp conditions for the existence of smooth inertial manifolds”, Proceedings of Equadiff 9, Conference on differential equations and their applications, Masaryk Univ., Brno, 1998, 139–166

[125] A. N. Kolmogorov and V. M. Tikhomirov, “$\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces”, Selected works of A. N. Kolmogorov, v. III, Math. Appl. (Soviet Ser.), 27, Kluwer Acad. Publ., Dordrecht, 1993, 86–170 | DOI | MR | Zbl

[126] A. Kostianko, “Inertial manifolds for the 3D modified-Leray-$\alpha$ model with periodic boundary conditions”, J. Dynam. Differential Equations, 30:1 (2018), 1–24 | DOI | MR | Zbl

[127] A. Kostianko, “Bi-Lipschitz Mané projectors and finite-dimensional reduction for complex Ginzburg–Landau equation”, Proc. A, 476:2239 (2020), 20200144, 14 pp. | DOI | MR | Zbl

[128] A. Kostianko, Xinhua Li, Chunyou Sun, and S. Zelik, “Inertial manifolds via spatial averaging revisited”, SIAM J. Math. Anal., 54:1 (2022), 268–305 | DOI | MR | Zbl

[129] A. Kostianko, Chunyou Sun, and S. Zelik, “Reaction-diffusion systems with supercritical nonlinearities revisited”, Math. Ann., 384:1-2 (2022), 1–45 | DOI | MR | Zbl

[130] A. Kostianko, Chunyou Sun, and S. Zelik, “Inertial manifolds for 3D complex Ginzburg–Landau equations with periodic boundary conditions”, Indiana Univ. Math. J. (to appear)

[131] A. Kostianko and S. Zelik, “Inertial manifolds for the 3D Cahn–Hilliard equations with periodic boundary conditions”, Commun. Pure Appl. Anal., 14:5 (2015), 2069–2094 | DOI | MR | Zbl

[132] A. Kostianko and S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. Part I: Dirichlet and Neumann boundary conditions”, Commun. Pure Appl. Anal., 16:6 (2017), 2357–2376 | DOI | MR | Zbl

[133] A. Kostianko and S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: Periodic boundary conditions”, Commun. Pure Appl. Anal., 17:1 (2018), 285–317 | DOI | MR | Zbl

[134] A. Kostianko and S. Zelik, “Kwak transform and inertial manifolds revisited”, J. Dynam. Differential Equations, 34:4 (2022), 2975–2995 | DOI | MR | Zbl

[135] A. Kostianko and S. Zelik, “Attractors for semigroups with multi-dimensional time and PDEs in unbounded domains”, Turkish J. Math., 47:3 (2023), 988–1002 | DOI | MR | Zbl

[136] A. Kostianko and S. Zelik, “Smooth extensions of inertial manifolds”, Anal. PDE (to appear)

[137] A. Kostianko and S. Zelik, Attractors in topological spaces revisited, preprint

[138] I. N. Kostin, “Lower semicontinuity of a non-hyperbolic attractor”, J. London Math. Soc. (2), 52:3 (1995), 568–582 | DOI | MR | Zbl

[139] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[140] I. Kukavica, “On the number of determining nodes for the Ginzburg–Landau equation”, Nonlinearity, 5:5 (1992), 997–1006 | DOI | MR | Zbl

[141] S. B. Kuksin, “Spectral properties of solutions for nonlinear PDEs in the turbulent regime”, Geom. Funct. Anal., 9:1 (1999), 141–184 | DOI | MR | Zbl

[142] S. Kuksin and A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp. | DOI | MR | Zbl

[143] N. V. Kuznetsov, T. N. Mokaev, O. A. Kuznetsova, and E. V. Kudryashova, “The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension”, Nonlinear Dynam., 102:2 (2020), 713–732 | DOI

[144] M. Kwak, “Finite-dimensional inertial forms for 2D Navier–Stokes equations”, Indiana Univ. Math. J., 41:4 (1992), 927–981 | DOI | MR | Zbl

[145] M. Kwak, “Finite-dimensional description of convective reaction-diffusion equations”, J. Dynam. Differential Equations, 4:3 (1992), 515–543 | DOI | MR | Zbl

[146] Hyukjin Kwean, “An extension of the principle of spatial averaging for inertial manifolds”, J. Austral. Math. Soc. Ser. A, 66:1 (1999), 125–142 | DOI | MR | Zbl

[147] O. A. Ladyzhenskaya, “A dynamical system generated by the Navier–Stokes equations”, J. Soviet Math., 3:4 (1975), 458–479 | DOI | MR | Zbl

[148] O. A. Ladyzhenskaya, “Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems”, J. Soviet Math., 28:5 (1985), 714–726 | DOI | MR | Zbl

[149] O. A. Ladyzhenskaya, Attractors for semigroups and evolution equations, Cambridge Math. Lib., Reprint of the 1991 ed., Cambridge Univ. Press, Cambridge, 2022, xxviii+68 pp. | DOI | MR | Zbl

[150] P. G. Lemarié-Rieusset, Recent developments in the Navier–Stokes problem, Chapman Hall/CRC Res. Notes Math., 431, Chapman Hall/CRC, Boca Raton, FL, 2002, xiv+395 pp. | DOI | MR | Zbl

[151] G. A. Leonov, N. V. Kuznetsov, N. A. Korzhemanova, and D. V. Kusakin, “Lyapunov dimension formula for the global attractor of the Lorenz system”, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 84–103 | DOI | MR | Zbl

[152] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl

[153] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | Zbl

[154] Desheng Li and P. E. Kloeden, “Equi-attraction and the continuous dependence of attractors on parameters”, Glasg. Math. J., 46:1 (2004), 131–141 | DOI | MR | Zbl

[155] E. H. Lieb, “On characteristic exponents in turbulence”, Comm. Math. Phys., 92:4 (1984), 473–480 | DOI | MR | Zbl

[156] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[157] Songsong Lu, “Attractors for nonautonomous 2D Navier–Stokes equations with less regular normal forces”, J. Differential Equations, 230:1 (2006), 196–212 | DOI | MR | Zbl

[158] Songsong Lu, “Attractors for nonautonomous reaction-diffusion systems with symbols without strong translation compactness”, Asymptot. Anal., 54:3-4 (2007), 197–210 | MR | Zbl

[159] Songsong Lu, Hongqing Wu, and Chengkui Zhong, “Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces”, Discrete Contin. Dyn. Syst., 13:3 (2005), 701–719 | DOI | MR | Zbl

[160] Shan Ma, Xiyou Cheng, and Hongtao Li, “Attractors for non-autonomous wave equations with a new class of external forces”, J. Math. Anal. Appl., 337:2 (2008), 808–820 | DOI | MR | Zbl

[161] Shan Ma and Chengkui Zhong, “The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces”, Discrete Contin. Dyn. Syst., 18 (2007), 53–70 | DOI | MR | Zbl

[162] Shan Ma, Chengkui Zhong, and Haitao Song, “Attractors for nonautonomous 2D Navier–Stokes equations with less regular symbols”, Nonlinear Anal., 71:9 (2009), 4215–4222 | DOI | MR | Zbl

[163] J. Málek and J. Nečas, “A finite-dimensional attractor for three-dimensional flow of incompressible fluids”, J. Differential Equations, 127:2 (1996), 498–518 | DOI | MR | Zbl

[164] J. Málek and D. Pražák, “Large time behavior via the method of $\ell$-trajectories”, J. Differential Equations, 181:2 (2002), 243–279 | DOI | MR | Zbl

[165] J. Mallet-Paret, “Negatively invariant sets of compact maps and an extension of a theorem of Cartwright”, J. Differential Equations, 22:2 (1976), 331–348 | DOI | MR | Zbl

[166] J. Mallet-Paret and G. Sell, “Inertial manifolds for reaction diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR | Zbl

[167] J. Mallet-Paret, G. Sell, and Zhoude Shao, “Obstructions to the existence of normally hyperbolic inertial manifolds”, Indiana Univ. Math. J., 42:3 (1993), 1027–1055 | DOI | MR | Zbl

[168] R. Mañé, “Reduction of semilinear parabolic equations to finite dimensional $C^1$ flows”, Geometry and topology, Proc. III Latin Amer. School of Math. (Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro 1976), Lecture Notes in Math., 597, Springer, Berlin, 1977, 361–378 | DOI | MR | Zbl

[169] R. Mañé, “On the dimension of the compact invariant sets of certain non-linear maps”, Dynamical systems and turbulence, Warwick 1980 (Coventry 1979/1980), Lecture Notes in Math., 898, Springer, Berlin–New York, 1981, 230–242 | DOI | MR | Zbl

[170] A. Marzocchi and S. Z. Necca, “Attractors for dynamical systems in topological spaces”, Discrete Contin. Dyn. Sys., 8:3 (2002), 585–597 | DOI | MR | Zbl

[171] V. S. Melnik and J. Valero, “On attractors of multivalued semi-flows and differential inclusions”, Set-Valued Anal., 6:1 (1998), 83–111 | DOI | MR | Zbl

[172] A. Mielke, “Essential manifolds for an elliptic problem in an infinite strip”, J. Differential Equations, 110:2 (1994), 322–355 | DOI | MR | Zbl

[173] A. Mielke and S. V. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784 | DOI | MR | Zbl

[174] A. Mielke and S. V. Zelik, “Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction diffusion systems in $\mathbb R^n$”, J. Dynam. Differential Equations, 19:2 (2007), 333–389 | DOI | MR | Zbl

[175] M. Miklavčič, “A sharp condition for existence of an inertial manifold”, J. Dynam. Differential Equations, 3:3 (1991), 437–456 | DOI | MR | Zbl

[176] J. Milnor, “On the concept of attractor”, Comm. Math. Phys., 99:2 (1985), 177–195 | DOI | MR | Zbl

[177] A. Miranville and S. Zelik, “Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions”, Math. Methods Appl. Sci., 28:6 (2005), 709–735 | DOI | MR | Zbl

[178] A. Miranville and S. Zelik, “Finite-dimensionality of attractors of degenerate equations of elliptic-parabolic type”, Nonlinearity, 20:8 (2007), 1773–1797 | DOI | MR | Zbl

[179] A. Miranville and S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200 | DOI | MR | Zbl

[180] A. Miranville and S. Zelik, “Doubly nonlinear Cahn–Hilliard–Gurtin equations”, Hokkaido Math. J., 38:2 (2009), 315–360 | DOI | MR | Zbl

[181] I. Moise, R. Rosa, and Xiaoming Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11:5 (1998), 1369–1393 | DOI | MR | Zbl

[182] X. Mora and J. Solà-Morales, “Inertial manifolds of damped semilinear wave equations”, Attractors, inertial manifolds and their approximation (Marseille–Luminy 1987), RAIRO Modél. Math. Anal. Numér., 23:3 (1989), 489–505 | DOI | MR | Zbl

[183] C. G. T. Moreira, M. J. Pacifico, and S. R. Ibarra, “Hausdorff dimension, Lagrange and Markov dynamical spectra for geometric Lorenz attractors”, Bull. Amer. Math. Soc. (N. S.), 57:2 (2020), 269–292 | DOI | MR | Zbl

[184] E. Olson and E. S. Titi, “Determining modes and Grashof number in 2D turbulence: a numerical case study”, Theor. Comput. Fluid Dyn., 22 (2008), 327–339 | DOI | Zbl

[185] V. Pata and S. Zelik, “A result on the existence of global attractors for semigroups of closed operators”, Commun. Pure Appl. Anal., 6:2 (2007), 481–486 | DOI | MR | Zbl

[186] M. Pierre and D. Schmidt, “Blowup in reaction-diffusion systems with dissipation of mass”, SIAM Rev., 42:1 (2000), 93–106 | DOI | MR | Zbl

[187] I. Prigogine, Time, structure and fluctuations, Nobel lecture, 1977, 23 pp. https://www.nobelprize.org/uploads/2018/06/prigogine-lecture.pdf

[188] E. Priola, Lihu Xu, and J. Zabczyk, “Exponential mixing for some SPDEs with Lévy noise”, Stoch. Dyn., 11:2-3 (2011), 521–534 | DOI | MR | Zbl

[189] D. Rand, “The topological classification of Lorenz attractors”, Math. Proc. Cambridge Philos. Soc., 83:3 (1978), 451–460 | DOI | MR | Zbl

[190] I. Richards, “On the gaps between numbers which are sums of two squares”, Adv. in Math., 46:1 (1982), 1–2 | DOI | MR | Zbl

[191] A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Tracts in Math. and Math. Phys., 53, Cambridge Univ. Press, New York, 1964, viii+158 pp. | MR | Zbl

[192] J. C. Robinson, Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2001, xviii+461 pp. | MR | Zbl

[193] J. C. Robinson, Dimensions, embeddings, and attractors, Cambridge Tracts in Math., 186, Cambridge Univ. Press, Cambridge, 2011, xii+205 pp. | DOI | MR | Zbl

[194] J. C. Robinson, J. L. Rodrigo, and W. Sadowski, The three-dimensional Navier–Stokes equations. Classical theory, Cambridge Stud. Adv. Math., 157, Cambridge Univ. Press, Cambridge, 2016, xiv+471 pp. | DOI | MR | Zbl

[195] A. V. Romanov, “Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations”, Russian Acad. Sci. Izv. Math., 43:1 (1994), 31–47 | DOI | MR | Zbl

[196] A. V. Romanov, “On the limit dynamics of evolution equations”, Russian Math. Surveys, 51:2 (1996), 345–346 | DOI | MR | Zbl

[197] A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Math. Notes, 68:3 (2000), 378–385 | DOI | MR | Zbl

[198] A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001 | DOI | MR | Zbl

[199] R. Rosa and R. Temam, “Inertial manifolds and normal hyperbolicity”, Acta Appl. Math., 45:1 (1996), 1–50 | DOI | MR | Zbl

[200] J. Le Rousseau and G. Lebeau, “On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations”, ESAIM Control Optim. Calc. Var., 18:3 (2012), 712–747 | DOI | MR | Zbl

[201] W. Rudin, Functional analysis, Internat. Ser. Pure Appl. Math., 2nd ed., McGraw-Hill, Inc., 1991, xviii+424 pp. | MR | Zbl

[202] D. Ruelle, “Small random perturbations of dynamical systems and the definition of attractors”, Comm. Math. Phys., 82:1 (1981), 137–151 | DOI | MR | Zbl

[203] T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology”, J. Statist. Phys., 65 (1991), 579–616 | DOI | MR | Zbl

[204] A. Savostianov and S. Zelik, “Finite dimensionality of the attractor for the hyperbolic Cahn–Hilliard–Oono equation in $\mathbb R^3$”, Math. Methods Appl. Sci., 39:5 (2016), 1254–1267 | DOI | MR | Zbl

[205] A. K. Savostianov and S. V. Zelik, “Uniform attractors for measure-driven quintic wave equations”, Russian Math. Surveys, 75:2 (2020), 253–320 | DOI | MR | Zbl

[206] M. Scheutzow, “Comparison of various concepts of a random attractor: a case study”, Arch. Math. (Basel), 78:3 (2002), 233–240 | DOI | MR | Zbl

[207] A. Segatti and S. Zelik, “Finite-dimensional global and exponential attractors for the reaction-diffusion problem with an obstacle potential”, Nonlinearity, 22:11 (2009), 2733–2760 | DOI | MR | Zbl

[208] G. R. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl

[209] G. R. Sell and Yuncheng You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002, xiv+670 pp. | DOI | MR | Zbl

[210] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua, Methods of qualitative theory in nonlinear dynamics, Part II, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Sci. Publ., River Edge, NJ, 2001, i–xxiv and 393–957 | DOI | MR | Zbl

[211] A. Shirikyan and S. Zelik, “Exponential attractors for random dynamical systems and applications”, Stoch. Partial Differ. Equ. Anal. Comput., 1:2 (2013), 241–281 | DOI | MR | Zbl

[212] D. W. Stroock, Probability theory. An analytic view, Cambridge Univ. Press, Cambridge, 1993, xvi+512 pp. | MR | Zbl

[213] F. Takens, “Detecting strange attractors in turbulence”, Dynamical systems and turbulence, Warwick 1980 (Coventry 1979/1980), Lecture Notes in Math., 898, Springer, Berlin–New York, 1981, 366–381 | DOI | MR | Zbl

[214] R. Temam, Navier–Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conf. Ser. in Appl. Math., 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983, xii+122 pp. | MR | Zbl

[215] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl

[216] R. Temam and Shou Hong Wang, “Inertial forms of Navier–Stokes equations on the sphere”, J. Funct. Anal., 117:1 (1993), 215–242 | DOI | MR | Zbl

[217] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, 18, North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. | DOI | MR | Zbl

[218] W. Tucker, “A rigorous ODE solver and Smale's 14th problem”, Found. Comput. Math., 2:1 (2002), 53–117 | DOI | MR | Zbl

[219] D. Turaev, “On dimension of non-local bifurcational problems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:5 (1996), 919–948 | DOI | MR | Zbl

[220] D. Turaev, S. Zelik, “Homoclinic bifurcations and dimension of the attractors for damped nonlinear hyperbolic equations”, Nonlinearity, 16:6 (2003), 2163–2198 | DOI | MR | Zbl

[221] D. Turaev and S. Zelik, “Analytical proof of space-time chaos in Ginzburg–Landau equations”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1713–1751 | DOI | MR | Zbl

[222] J. Valero, “On the Kneser property for some parabolic problems”, Topology Appl., 153:5-6 (2005), 975–989 | DOI | MR | Zbl

[223] M. I. Vishik, Asymptotic behaviour of solutions of evolutionary equations, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1992, vi+155 pp. | MR | Zbl

[224] M. I. Vishik and V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731 | DOI | MR | Zbl

[225] M. I. Vishik and S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Sb. Math., 187:12 (1996), 1755–1789 | DOI | MR | Zbl

[226] M. I. Vishik and S. V. Zelik, “Regular attractor for a non-linear elliptic system in a cylindrical domain”, Sb. Math., 190:6 (1999), 803–834 | DOI | MR | Zbl

[227] M. I. Vishik, S. V. Zelik and V. V. Chepyzhov, “Strong trajectory attractor for a dissipative reaction-diffusion system”, Dokl. Math., 82:3 (2010), 869–873 | DOI | MR | Zbl

[228] M. I. Vishik, S. V. Zelik, and V. V. Chepyzhov, “Regular attractors and nonautonomous perturbations of them”, Sb. Math., 204:1 (2013), 1–42 | DOI | MR | Zbl

[229] A. I. Volpert, Vit. A. Volpert, and Vl. A. Volpert, Traveling wave solutions of parabolic systems, Transl. from the Russian manuscript, Transl. Math. Monogr., 140, Amer. Math. Soc., Providence, RI, 1994, xii+448 pp. | MR | Zbl

[230] J. Vukadinovic, “Inertial manifolds for a Smoluchowski equation on a circle”, Nonlinearity, 21:7 (2008), 1533–1545 | DOI | MR | Zbl

[231] J. Vukadinovic, “Inertial manifolds for a Smoluchowski equation on the unit sphere”, Comm. Math. Phys., 285:3 (2009), 975–990 | DOI | MR | Zbl

[232] J. Vukadinovic, “Global dissipativity and inertial manifolds for diffusive Burgers equations with low-wavenumber instability”, Discrete Contin. Dyn. Syst., 29:1 (2011), 327–341 | DOI | MR | Zbl

[233] Xingxing Wang and Hongyong Cui, “On the residual continuity of global attractors”, Mathematics, 10:9 (2022), 1444, 7 pp. | DOI

[234] Yangmin Xiong, A. Kostianko, Chunyou Sun, and S. Zelik, Entropy estimates for uniform attractors of dissipative PDEs with non translation-compact external forces, 2022, 32 pp., arXiv: 2202.05590

[235] Lai-Sang Young, “What are SRB measures, and which dynamical systems have them?”, J. Statist. Phys., 108:5-6 (2002), 733–754 | DOI | MR | Zbl

[236] S. V. Zelik, A trajectory attractor of a nonlinear elliptic system in an unbounded domain, Manuscript no. 3328-‚ 97 deposited at VINITI, 1997 (Russian)

[237] S. V. Zelik, “A trajectory attractor of a nonlinear elliptic system in an unbounded domain”, Math. Notes, 63:1 (1998), 120–123 | DOI | MR | Zbl

[238] S. Zelik, “The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 24 (2000), 1–25 | MR

[239] S. Zelik, “Multiparameter semigroups and attractors of reaction-diffusion equations in $\mathbb{R}^n$”, Trans. Moscow Math. Soc., 65 (2004), 105–160 | DOI | MR | Zbl

[240] S. Zelik, “Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent”, Commun. Pure Appl. Anal., 3:4 (2004), 921–934 | DOI | MR | Zbl

[241] S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392 | DOI | MR | Zbl

[242] S. Zelik, “On the Lyapunov dimension of cascade systems”, Commun. Pure Appl. Anal., 7:4 (2008), 971–985 | DOI | MR | Zbl

[243] S. Zelik, “Inertial manifolds and finite-dimensional reduction for dissipative PDEs”, Proc. Roy. Soc. Edinburgh Sect. A, 144:6 (2014), 1245–1327 | DOI | MR | Zbl

[244] S. Zelik, “Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces”, Discrete Contin. Dyn. Syst. Ser. B, 20:3 (2015), 781–810 | DOI | MR | Zbl

[245] S. Zelik and A. Mielke, Multi-pulse evolution and space-time chaos in dissipative systems, Mem. Amer. Math. Soc., 198, no. 925, Amer. Math. Soc., Providence, RI, 2009, vi+97 pp. | DOI | MR | Zbl

[246] Caidi Zhao and Shengfan Zhou, “Pullback trajectory attractors for evolution equations and application to 3D incompressible non-Newtonian fluid”, Nonlinearity, 21:8 (2008), 1691–1717 | DOI | MR | Zbl

[247] Shengfan Zhou, “Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise”, J. Differential Equations, 263:4 (2017), 2247–2279 | DOI | MR | Zbl

[248] V. G. Zvyagin and S. K. Kondrat'ev, “Attractors of equations of non-Newtonian fluid dynamics”, Russian Math. Surveys, 69:5 (2014), 845–913 | DOI | MR | Zbl