Mots-clés : effective equations, uniform in time convergence.
@article{RM_2023_78_4_a0,
author = {G. Huang and S. B. Kuksin},
title = {Averaging and mixing for stochastic perturbations of linear conservative systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {585--633},
year = {2023},
volume = {78},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_4_a0/}
}
TY - JOUR AU - G. Huang AU - S. B. Kuksin TI - Averaging and mixing for stochastic perturbations of linear conservative systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 585 EP - 633 VL - 78 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2023_78_4_a0/ LA - en ID - RM_2023_78_4_a0 ER -
G. Huang; S. B. Kuksin. Averaging and mixing for stochastic perturbations of linear conservative systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 4, pp. 585-633. http://geodesic.mathdoc.fr/item/RM_2023_78_4_a0/
[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd rev. ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[2] P. Billingsley, Convergence of probability measures, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1999, x+277 pp. | DOI | MR | Zbl
[3] V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl
[4] N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations, Int. Monogr. Adv. Math. Phys., Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publishers, Inc., New York, 1961, v+537 pp. | MR | Zbl
[5] A. Boritchev and S. Kuksin, One-dimensional turbulence and the stochastic Burgers equation, Math. Surveys Monogr., 255, Amer. Math. Soc., Providence, RI, 2021, vii+192 pp. | MR | Zbl
[6] V. Sh. Burd, Method of averaging on an infinite intervals and some problems in oscillation theory, Yaroslavl' State University, Yaroslavl', 2013, 416 pp. (Russian)
[7] Jinqiao Duan and Wei Wang, Effective dynamics of stochastic partial differential equations, Elsevier, Amsterdam, 2014, xii+270 pp. | DOI | MR | Zbl
[8] R. M. Dudley, Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002, x+555 pp. | DOI | MR | Zbl
[9] A. Dymov, “Nonequilibrium statistical mechanics of weakly stochastically perturbed system of oscillators”, Ann. Henri Poincaré, 17:7 (2016), 1825–1882 | DOI | MR | Zbl
[10] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, 2nd ed., Springer-Verlag, New York, 1998, xii+430 pp. | DOI | MR | Zbl
[11] G. Huang and S. Kuksin, “On averaging and mixing for stochastic PDEs”, J. Dynam. Differential Equations, 2022, Publ. online | DOI
[12] Guan Huang, S. Kuksin, and A. Maiocchi, “Time-averaging for weakly nonlinear CGL equations with arbitrary potentials”, Hamiltonian partial differential equations and applications, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 323–349 | DOI | MR | Zbl
[13] Wenwen Jian, S. B. Kuksin, and Yuan Wu, “Krylov–Bogolyubov averaging”, Russian Math. Surveys, 75:3 (2020), 427–444 | DOI | MR | Zbl
[14] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 2005, xxiii+470 pp. | DOI | MR | Zbl
[15] R. Z. Has'minski (Khasminski), “On stochastic processes defined by differential equations with a small parameter”, Theory Probab. Appl., 11:2 (1966), 211–228 | DOI | MR | Zbl
[16] R. Z. Khasminski, “The averaging principle for stochastic Ito differential equations”, Kybernetika (Prague), 4:3 (1968), 260–279 (Russian) | MR | Zbl
[17] R. Khasminskii, Stochastic stability of differential equations, Stoch. Model. Appl. Probab., 66, 2nd ed., Springer, Heidelberg, 2012, xviii+339 pp. | DOI | MR | Zbl
[18] Yu. Kifer, Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging, Mem. Amer. Math. Soc., 201, no. 944, Amer. Math. Soc., Providence, RI, 2009, viii+129 pp. | DOI | MR | Zbl
[19] S. Kuksin and A. Maiocchi, “Resonant averaging for small-amplitude solutions of stochastic nonlinear Schrödinger equations”, Proc. Roy. Soc. Edinburgh Sect. A, 148:2 (2018), 357–394 | DOI | MR | Zbl
[20] A. Kulik, Ergodic behavior of Markov processes. With applications to limit theorems, De Gruyter Stud. Math., 67, De Gruyter, Berlin, 2018, x+256 pp. | DOI | MR | Zbl
[21] Shu-Jun Liu and M. Krstic, Stochastic averaging and stochastic extremum seeking, Comm. Control Engrg. Ser., Springer, London, 2012, xii+224 pp. | DOI | MR | Zbl
[22] J. C. Mattingly, A. M. Stuart, and D. J. Higham, “Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise”, Stochastic Process. Appl., 101:2 (2002), 185–232 | DOI | MR | Zbl
[23] A. V. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, Transl. Math. Monogr., 78, Amer. Math. Soc., Providence, RI, 1989, xvi+339 pp. | DOI | MR | Zbl
[24] D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Grundlehren Math. Wiss., 233, Springer-Verlag, Berlin–New York, 1979, xii+338 pp. | MR | Zbl
[25] A. Yu. Veretennikov, “On the averaging principle for systems of stochastic differential equations”, Math. USSR-Sb., 69:1 (1991), 271–284 | DOI | MR | Zbl
[26] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl
[27] H. Whitney, “Differentiable even functions”, Duke Math. J., 10 (1943), 159–160 ; Collected papers, v. 1, Contemp. Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1992, 309–310 | DOI | MR | Zbl | DOI | MR | Zbl