The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 569-571 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2023_78_3_a7,
     author = {V. D. Sedykh},
     title = {The topology of the complement to the caustic of a {Lagrangian} germ of type $E_6^\pm$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {569--571},
     year = {2023},
     volume = {78},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_3_a7/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 569
EP  - 571
VL  - 78
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_3_a7/
LA  - en
ID  - RM_2023_78_3_a7
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 569-571
%V 78
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2023_78_3_a7/
%G en
%F RM_2023_78_3_a7
V. D. Sedykh. The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 569-571. http://geodesic.mathdoc.fr/item/RM_2023_78_3_a7/

[1] V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp. | DOI | MR | Zbl

[2] V. D. Sedykh, Izv. Math., 79:3 (2015), 581–622 | DOI | MR | Zbl

[3] V. D. Sedykh, Izv. Math., 82:3 (2018), 596–611 | DOI | MR | Zbl

[4] V. D. Sedykh, Izv. Math., 85:2 (2021), 279–305 | DOI | MR | Zbl

[5] V. D. Sedykh, Mathematical methods of catastroph theory, Moscow Center of Continuous Mathematical Education, Moscow, 2021, 224 pp. (Russian)

[6] V. D. Sedykh, Funct. Anal. Appl., 57:1 (2023), 80–82 | DOI | MR | Zbl

[7] V. A. Vasil'ev, Lagrange and Legendre characteristic classes, Adv. Stud. Contemp. Math., 3, Gordon and Breach Sci. Publ., New York, 1988, x+268 pp. | MR | Zbl