The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 569-571
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2023_78_3_a7,
author = {V. D. Sedykh},
title = {The topology of the complement to the caustic of a {Lagrangian} germ of type $E_6^\pm$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {569--571},
year = {2023},
volume = {78},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_3_a7/}
}
TY - JOUR AU - V. D. Sedykh TI - The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 569 EP - 571 VL - 78 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2023_78_3_a7/ LA - en ID - RM_2023_78_3_a7 ER -
V. D. Sedykh. The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 569-571. http://geodesic.mathdoc.fr/item/RM_2023_78_3_a7/
[1] V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp. | DOI | MR | Zbl
[2] V. D. Sedykh, Izv. Math., 79:3 (2015), 581–622 | DOI | MR | Zbl
[3] V. D. Sedykh, Izv. Math., 82:3 (2018), 596–611 | DOI | MR | Zbl
[4] V. D. Sedykh, Izv. Math., 85:2 (2021), 279–305 | DOI | MR | Zbl
[5] V. D. Sedykh, Mathematical methods of catastroph theory, Moscow Center of Continuous Mathematical Education, Moscow, 2021, 224 pp. (Russian)
[6] V. D. Sedykh, Funct. Anal. Appl., 57:1 (2023), 80–82 | DOI | MR | Zbl
[7] V. A. Vasil'ev, Lagrange and Legendre characteristic classes, Adv. Stud. Contemp. Math., 3, Gordon and Breach Sci. Publ., New York, 1988, x+268 pp. | MR | Zbl