An ergodic theorem for actions of Fuchsian groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 566-568
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2023_78_3_a6,
     author = {A. I. Bufetov and A. V. Klimenko and C. Series},
     title = {An ergodic theorem for actions of {Fuchsian} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {566--568},
     year = {2023},
     volume = {78},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_3_a6/}
}
TY  - JOUR
AU  - A. I. Bufetov
AU  - A. V. Klimenko
AU  - C. Series
TI  - An ergodic theorem for actions of Fuchsian groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 566
EP  - 568
VL  - 78
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_3_a6/
LA  - en
ID  - RM_2023_78_3_a6
ER  - 
%0 Journal Article
%A A. I. Bufetov
%A A. V. Klimenko
%A C. Series
%T An ergodic theorem for actions of Fuchsian groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 566-568
%V 78
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2023_78_3_a6/
%G en
%F RM_2023_78_3_a6
A. I. Bufetov; A. V. Klimenko; C. Series. An ergodic theorem for actions of Fuchsian groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 566-568. http://geodesic.mathdoc.fr/item/RM_2023_78_3_a6/

[1] R. Bowen and C. Series, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 153–170 | DOI | MR | Zbl

[2] A. I. Bufetov, Funct. Anal. Appl., 34:4 (2000), 239–251 | DOI | MR | Zbl

[3] A. I. Bufetov, Ann. of Math. (2), 155:3 (2002), 929–944 | DOI | MR | Zbl

[4] A. I. Bufetov and C. Series, Math. Proc. Cambridge Philos. Soc., 151:1 (2011), 145–159 | DOI | MR | Zbl

[5] K. Fujiwara and A. Nevo, Ergodic Theory Dynam. Systems, 18:4 (1998), 843–858 | DOI | MR | Zbl

[6] R. I. Grigorchuk, Proc. Steklov Inst. Math., 231 (2000), 113–127 | MR | Zbl

[7] G.-C. Rota, Bull. Amer. Math. Soc., 68 (1962), 95–102 | DOI | MR | Zbl

[8] M. Wroten, The eventual Gaussian distribution of self-intersection numbers on closed surfaces, Thesis (Ph.D.), State Univ. of New York, Stony Brook, 2013, 41 pp. ; 2014, 43 pp., arXiv: 1405.7951 | MR