Derived category of moduli of parabolic bundles on $\mathbb{P}^1$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 563-565
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2023_78_3_a5,
author = {A. V. Fonarev},
title = {Derived category of moduli of parabolic bundles on $\mathbb{P}^1$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {563--565},
year = {2023},
volume = {78},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_3_a5/}
}
A. V. Fonarev. Derived category of moduli of parabolic bundles on $\mathbb{P}^1$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 563-565. http://geodesic.mathdoc.fr/item/RM_2023_78_3_a5/
[1] A. Fonarev and A. Kuznetsov, J. Lond. Math. Soc. (2), 97:1 (2018), 24–46 | DOI | MR | Zbl
[2] M. S. Narasimhan, J. Geom. Phys., 122 (2017), 53–58 | DOI | MR | Zbl
[3] J. Tevelev, Braid and phantom, 2023, 39 pp., arXiv: 2304.01825
[4] U. V. Desale and S. Ramanan, Invent. Math., 38:2 (1976), 161–185 | DOI | MR | Zbl
[5] C. Casagrande, Math. Z., 280:3-4 (2015), 981–988 | DOI | MR | Zbl
[6] I. Biswas, Duke Math. J., 88:2 (1997), 305–325 | DOI | MR | Zbl
[7] D. Bergh, V. A. Lunts, and O. M. Schnürer, Selecta Math. (N. S.), 22:4 (2016), 2535–2568 | DOI | MR | Zbl
[8] S. Bauer, Math. Ann., 290:3 (1991), 509–526 | DOI | MR | Zbl