Mots-clés : Jacobian
@article{RM_2023_78_3_a2,
author = {A. D. Mednykh and I. A. Mednykh},
title = {Cyclic coverings of graphs. {Counting} rooted spanning forests and trees, {Kirchhoff} index, and {Jacobians}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {501--548},
year = {2023},
volume = {78},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_3_a2/}
}
TY - JOUR AU - A. D. Mednykh AU - I. A. Mednykh TI - Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 501 EP - 548 VL - 78 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2023_78_3_a2/ LA - en ID - RM_2023_78_3_a2 ER -
%0 Journal Article %A A. D. Mednykh %A I. A. Mednykh %T Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 501-548 %V 78 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2023_78_3_a2/ %G en %F RM_2023_78_3_a2
A. D. Mednykh; I. A. Mednykh. Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 501-548. http://geodesic.mathdoc.fr/item/RM_2023_78_3_a2/
[1] N. V. Abrosimov, G. A. Baigonakova, L. A. Grunwald, and I. A. Mednykh, “Counting rooted spanning forests in cobordism of two circulant graphs”, Sib. Èlektron. Mat. Izv., 17 (2020), 814–823 | DOI | MR | Zbl
[2] N. V. Abrosimov, G. A. Baigonakova, and I. A. Mednykh, “Counting spanning trees in cobordism of two circulant graphs”, Sib. Èlektron. Mat. Izv., 15 (2018), 1145–1157 | DOI | MR | Zbl
[3] A. Ádám, “Research problem 2-10”, J. Combin. Theory, 2 (1967), 393
[4] R. Bacher, P. de la Harpe, and T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. France, 125:2 (1997), 167–198 | DOI | MR | Zbl
[5] G. A. Baigonakova avd A. D. Mednykh, “Elementary formulas for Kirchhoff index of Möbius ladder and prism graphs”, Sib. Èlektron. Mat. Izv., 16 (2019), 1654–1661 | DOI | MR | Zbl
[6] M. Baker and S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Not. IMRN, 2009:15 (2009), 2914–2955 | DOI | MR | Zbl
[7] H. Bass, “Covering theory for graphs of groups”, J. Pure Appl. Algebra, 89:1-2 (1993), 3–47 | DOI | MR | Zbl
[8] N. Biggs, “Three remarkable graphs”, Canad. J. Math., 25:2 (1973), 397–411 | DOI | MR | Zbl
[9] N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45 | DOI | MR | Zbl
[10] F. T. Boesch and Z. R. Bogdanowicz, “The number of spanning tress in a prism”, Internat. J. Comput. Math., 21:3-4 (1987), 229–243 | DOI
[11] F. T. Boesch and H. Prodinger, “Spanning tree formulas and Chebyshev polynomials”, Graphs Combin., 2 (1986), 191–200 | DOI | MR | Zbl
[12] D. W. Boyd, “Mahler's measure and invariants of hyperbolic manifolds”, Number theory for the millennium (Urbana, IL 2000), v. I, A K Peters, Natick, MA, 2002, 127–143 | MR | Zbl
[13] D. Calan, “A combinatorial derivation of the number of labeled forests”, J. Integer Seq., 6:4 (2003), 03.4.7, 9 pp. | MR | Zbl
[14] P. Chebotarev, “Spanning forests and the golden ratio”, Discrete Appl. Math., 156:5 (2008), 813–821 | DOI | MR | Zbl
[15] P. Chebotarev and R. Agaev, “Forest matrices around the Laplacian matrix”, Linear Algebra Appl., 356:1-3 (2002), 253–274 | DOI | MR | Zbl
[16] P. Chebotarev and E. Shamis, Matrix-forest theorems, 2006, 10 pp., arXiv: math/0602575
[17] Pingge Chen, Yaoping Hou, and Chingwah Woo, “On the critical group of the Möbius ladder graph”, Australas. J. Combin., 36 (2006), 133–142 | MR | Zbl
[18] Xiebin Chen, Qiuying Lin, and Fuji Zhang, “The number of spanning trees in odd valent circulant graphs”, Discrete Math., 282:1-3 (2004), 69–79 | DOI | MR | Zbl
[19] Z. Cinkir, “Effective resistances and Kirchhoff index of ladder graphs”, J. Math. Chem., 54:4 (2016), 955–966 | DOI | MR | Zbl
[20] Z. Cinkir, Effective resistances and Kirchhoff index of prism graphs, 2017, 9 pp., arXiv: 1704.03429
[21] M. Conder and R. Grande, “On embeddings of circulant graphs”, Electron. J. Combin., 22:2 (2015), P2.28, 27 pp. | DOI | MR | Zbl
[22] R. Cori and D. Rossin, “On the sandpile group of dual graphs”, European J. Combin., 21:4 (2000), 447–459 | DOI | MR | Zbl
[23] P. J. Davis, Circulant matrices, 2nd ed., AMS Chelsea Publishing, New York, NY, 1994 | MR | Zbl
[24] D. Dhar, P. Ruelle, S. Sen, and D.-N. Verma, “Algebraic aspects of Abelian sandpile models”, J. Phys. A: Math. Gen., 28:4 (1995), 805–831 | DOI | MR | Zbl
[25] S. A. Evdokimov and I. N. Ponomarenko, “Circulant graphs: recognizing and isomorphism testing in polynomial time”, St. Petersburg Math. J., 15:6 (2004), 813–835 | DOI | MR | Zbl
[26] G. Everest and T. Ward, Heights of polynomials and entropy in algebraic dynamics, Universitext, Springer-Verlag London, Ltd., London, 2013, 212 pp. | DOI | MR | Zbl
[27] C. Godsil and G. Royle, Algebraic graph theory, Grad. Texts in Math., 207, Springer-Verlag, New York, 2001, xx+439 pp. | DOI | MR | Zbl
[28] G. Goel and D. Perkinson, “Critical groups of iterated cones”, Linear Algebra Appl., 567 (2019), 138–142 | DOI | MR | Zbl
[29] C. M. Gordon, “A short proof of a theorem of Plans on the homology of the branched cyclic coverings of a knot”, Bull. Amer. Math. Soc., 77 (1971), 85–87 | DOI | MR | Zbl
[30] J. L. Gross and T. W. Tucker, Topological graph theory, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley Sons, Inc., New York, 1987, xvi+351 pp. | MR | Zbl
[31] L. A. Grunwald, Young Soo Kwon, and I. A. Mednykh, “Counting rooted spanning forests for circulant foliation over a graph”, Tohoku Math. J. (2), 74:4 (2022), 535–548 | DOI | MR | Zbl
[32] L. A. Grunwald and I. A. Mednykh, “On the Jacobian group of a cone over a circulant graph”, Mat. Zametki Sev. Vost. federal. Univ., 28:2 (2021), 88–101 | DOI
[33] L. A. Grunwald and I. A. Mednykh, “The number of rooted forests in circulant graphs”, Ars Math. Contemp., 22:4 (2022), 10, 12 pp. | DOI | MR | Zbl
[34] I. Gutman and B. Mohar, “The quasi-Wiener and the Kirchhoff indices coincide”, J. Chem. Inf. Comput. Sci., 36:5 (1996), 982–985 | DOI
[35] A. J. Guttmann and M. D. Rogers, “Spanning tree generating functions and Mahler measures”, J. Phys. A, 45:49 (2012), 494001, 24 pp. | DOI | MR | Zbl
[36] A. J. W. Hilton, “Spanning trees and Fibonacci and Lucas numbers”, Fibonacci Quart., 12 (1974), 259–262 | MR | Zbl
[37] J. D. Horton and I. Z. Bouwer, “Symmetric $Y$-graphs and $H$-graphs”, J. Combin. Theory Ser. B, 53:1 (1991), 114–129 | DOI | MR | Zbl
[38] Yaoping Hou, Chingwah Woo, and Pingge Chen, “On the sandpile group of the square cycle $C_n^2$”, Linear Algebra Appl., 418:2-3 (2006), 457–467 | DOI | MR | Zbl
[39] Danrun Huang, “A cyclic six-term exact sequence for block matrices over a PID”, Linear Multilinear Algebra, 49:2 (2001), 91–114 | DOI | MR | Zbl
[40] B. Jacobson, A. Niedermaier, and V. Reiner, “Critical groups for complete multipartite graphs and Cartesian products of complete graphs”, J. Graph Theory, 44:3 (2003), 231–250 | DOI | MR | Zbl
[41] J. L. V. W. Jensen, “Sur un nouvel et important théorème de la théorie des fonctions”, Acta Math., 22:1 (1899), 359–364 | DOI | MR | Zbl
[42] Yinglie Jin and Chunlin Lin, “Enumeration for spanning forests of complete bipartite graphs”, Ars Combin., 70 (2004), 135–138 | MR | Zbl
[43] M. Kagan and B. Mata, “A physics perspective on the resistance distance for graphs”, Math. Comput. Sci., 13:1-2 (2019), 105–115 | DOI | MR | Zbl
[44] A. K. Kelmans and V. M. Chelnokov, “A certain polynomial of a graph and graphs with an extremal number of trees”, J. Combin. Theory Ser. B, 16:3 (1974), 197–214 | DOI | MR | Zbl
[45] G. Kirchhoff, “Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird”, Ann. Phys. Chem., 72:12 (1847), 497–508 | DOI
[46] D. J. Klein and M. Randić, “Resistance distance”, J. Math. Chem., 12:1-4 (1993), 81–95 | DOI | MR
[47] O. Knill, “Cauchy–Binet for pseudo-determinants”, Linear Algebra Appl., 459 (2014), 522–547 | DOI | MR | Zbl
[48] M. Kotani and T. Sunada, “Jacobian tori associated with a finite graph and its Abelian covering graphs”, Adv. in Appl. Math., 24:2 (2000), 89–110 | DOI | MR | Zbl
[49] Y. S. Kwon, A. D. Mednykh, and I. A. Mednykh, “On Jacobian group and complexity of the generalized Petersen graph $GP(n,k)$ through Chebyshev polynomials”, Linear Algebra Appl., 529 (2017), 355–373 | DOI | MR | Zbl
[50] Y. S. Kwon, A. D. Mednykh, and I. A. Mednykh, On complexity of cyclic coverings of graphs, 2018, 19 pp., arXiv: 1811.03801
[51] Y. S. Kwon, A. D. Mednykh, and I. A. Mednykh, “Complexity of the circulant foliation over a graph”, J. Algebraic Combin., 53:1 (2021), 115–129 | DOI | MR | Zbl
[52] D. H. Lehmer, “Factorization of certain cyclotomic functions”, Ann. of Math. (2), 34:3 (1933), 461–479 | DOI | MR | Zbl
[53] C. J. Liu and Yutze Chow, “Enumeration of forests in a graph”, Proc. Amer. Math. Soc., 83:3 (1981), 659–662 | DOI | MR | Zbl
[54] D. Lorenzini, “Smith normal form and Laplacians”, J. Combin. Theory Ser. B, 98:6 (2008), 1271–1300 | DOI | MR | Zbl
[55] J. Louis, “A formula for the number of spanning trees in circulant graphs with nonfixed generators and discrete tori”, Bull. Aust. Math. Soc., 92:3 (2015), 365–373 | DOI | MR | Zbl
[56] I. Lukovits, S. Nikolić, and N. Trinajstić, “Resistance distance in regular graphs”, Int. J. Quantum Chem., 71:3 (1999), 217–225 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[57] Ye Luzhen, “On the Kirchhoff index of some toroidal lattices”, Linear Multilinear Algebra, 59:6 (2011), 645–650 | DOI | MR | Zbl
[58] K. Mahler, “On some inequalities for polynomials in several variables”, J. London Math. Soc., 37 (1962), 341–344 | DOI | MR | Zbl
[59] W. S. Massey, Algebraic topology: an introduction, Harcourt, Brace World, Inc., New York, 1967, xix+261 pp. ; J. Stallings, Group theory and three-dimensional manifolds, Yale Math. Monogr., 4, Yale Univ. Press, New Haven, CT–London, 1971, v+65 pp. | MR | Zbl | MR | Zbl
[60] A. D. Mednykh and I. A. Mednykh, “On the structure of the Jacobian group for circulant graphs”, Dokl. Math., 94:1 (2016), 445–449 | DOI | MR | Zbl
[61] A. D. Mednykh and I. A. Mednykh, “Asymptotics and arithmetical properties of complexity for circulant graphs”, Dokl. Math., 97:2 (2018), 147–151 | DOI | MR | Zbl
[62] A. D. Mednykh and I. A. Mednykh, “The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic”, Discrete Math., 342:6 (2019), 1772–1781 | DOI | MR | Zbl
[63] A. D. Mednykh and I. A. Mednykh, “On the structure of the critical group of a circulant graph with non-constant jumps”, Russian Math. Surveys, 75:1 (2020), 190–192 | DOI | MR | Zbl
[64] A. D. Mednykh and I. A. Mednykh, “Kirchhoff index for circulant graphs and its asymptotics”, Dokl. Math., 102:2 (2020), 392–395 | DOI | MR | Zbl
[65] A. D. Mednykh and I. A. Mednykh, “On rationality of generating function for the number of spanning trees in circulant graphs”, Algebra Colloq., 27:1 (2020), 87–94 | DOI | MR | Zbl
[66] A. D. Mednykh and I. A. Mednykh, “Plans' periodicity theorem for Jacobian of circulant graphs”, Dokl. Math., 103:3 (2021), 139–142 | DOI | MR | Zbl
[67] A. Mednykh and I. Mednykh, “Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics”, Ars Math. Contemp., 23:1 (2023), 8, 16 pp. | DOI | MR | Zbl
[68] I. A. Mednykh, “On Jacobian group and complexity of the $I$-graph $I(n,k,l)$ through Chebyshev polynomials”, Arc Math. Contemp., 15:2 (2018), 467–485 | DOI | MR | Zbl
[69] I. A. Mednykh and M. A. Zindinova, “On the structure of Picard group for Moebius ladder”, Sib. Èlektron. Mat. Izv., 8 (2011), 54–61 | MR | Zbl
[70] B. Mohar, “The Laplacian spectrum of graphs”, Graph theory, combinatorics, and applications (Kalamazoo, MI 1988), v. 2, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1991, 871–898 | MR | Zbl
[71] M. Muzychuk, “A solution of the isomorphism problem for circulant graphs”, Proc. London Math. Soc. (3), 88:1 (2004), 1–41 | DOI | MR | Zbl
[72] N. Neumärker, The arithmetic structure of discrete dynamical systems on the torus, PhD thesis, Univ. Bielefeld, Bielefeld, 2012, 92 pp., pp. https://pub.uni-bielefeld.de/download/2508475/2508565/Diss_Neumaerker.pdf
[73] J. L. Palacios, “Closed-form formulas for Kirchhoff index”, Int. J. Quantum Chem., 81:2 (2001), 135–140 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[74] A. Plans, “Aportación al estudio de los grupos de homología de los recubrimientos cíclicos ramificados correspondientes a un nudo”, Rev. Acad. Ci. Madrid, 47 (1953), 161–193 | MR | Zbl
[75] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl
[76] M. Sakuma, “Homology of Abelian coverings of links and spatial graphs”, Canad. J. Math., 47:1 (1995), 201–224 | DOI | MR | Zbl
[77] J. Sedláček, “On the number of spanning trees of finite graphs”, Časopis Pěst. Mat., 94:2 (1969), 217–221 | MR | Zbl
[78] J. Sedlácěk, “On the skeletons of a graph or digraph”, Combinatorial structures and their applications (Calgary, 1969), Gordon and Breach Sci. Publ., New York–London–Paris, 1970, 387–391 | MR | Zbl
[79] R. Shrock and F. Y. Wu, “Spanning trees on graphs and lattices in $d$ dimensions”, J. Phys. A, 33:21 (2000), 3881–3902 | DOI | MR | Zbl
[80] D. S. Silver and S. G. Williams, Spanning trees and Mahler measure, 2016, 12 pp., arXiv: 1602.02797
[81] D. S. Silver and S. G. Williams, Graph complexity and Mahler measure, 2017, 16 pp., arXiv: 1701.06097
[82] Ch. Smyth, “The Mahler measure of algebraic numbers: a survey”, Number theory and polynomials, London Math. Soc. Lecture Note Ser., 352, Cambridge Univ. Press, Cambridge, 2008, 322–349 | DOI | MR | Zbl
[83] A. Steimle and W. Staton, “The isomorphism classes of the generalized Petersen graphs”, Discrete Math., 309:1 (2009), 231–237 | DOI | MR | Zbl
[84] W. H. Stevens, On the homology of branched cyclic covers of knots, PhD thesis, Louisiana State Univ. and Agricultural Mechanical College, 1996, 40 pp. | DOI | MR
[85] Weigang Sun, Shuai Wang, and Jingyuan Zhang, “Counting spanning trees in prism and anti-prism graphs”, J. Appl. Anal. Comput., 6:1 (2016), 65–75 | DOI | MR | Zbl
[86] L. Takács, “On the number of distinct forests”, SIAM J. Discrete Math., 3:4 (1990), 574–581 | DOI | MR | Zbl
[87] H. N. V. Templerley and M. E. Fisher, “Dimer problem in statistical mechanics – an exact result”, Philos. Mag. (8), 6:68 (1961), 1061–1063 | DOI | MR | Zbl
[88] L. Weinberg, “Number of trees in a graph”, Proc. IRE, 46:12 (1958), 1954–1955 | DOI
[89] H. Wiener, “Structural determination of paraffin boiling points”, J. Amer. Chem. Soc., 69:1 (1947), 17–20 | DOI
[90] F. Y. Wu, “Number of spanning trees on a lattice”, J. Phys. A, 10:6 (1977), L113–L115 | DOI | MR
[91] Wenjun Xiao and I. Gutman, “Resistance distance and Laplacian spectrum”, Theor. Chem. Acc., 110 (2003), 284–289 | DOI
[92] Heping Zhang and Yujun Yang, “Resistance distance and Kirchhoff index in circulant graphs”, Int. J. Quantum Chem., 107:2 (2007), 330–339 | DOI
[93] Yuanping Zhang, Xuerong Yong, and M. J. Golin, “The number of spanning trees in circulant graphs”, Discrete Math., 223:1-3 (2000), 337–350 | DOI | MR | Zbl
[94] Yuanping Zhang, Xuerong Yong, and M. J. Golin, “Chebyshev polynomials and spanning tree formulas for circulant and related graphs”, Discrete Math., 298:1-3 (2005), 334–364 | DOI | MR | Zbl
[95] H.-Y. Zhu, D. J. Klein, and I. Lukovits, “Extensions of the Wiener number”, J. Chem. Inf. Comput. Sci., 36:3 (1996), 420–428 | DOI