Mots-clés : matrix distributions
@article{RM_2023_78_3_a1,
author = {A. M. Vershik and G. A. Veprev and P. B. Zatitskii},
title = {Dynamics of metrics in measure spaces and scaling entropy},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {443--499},
year = {2023},
volume = {78},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_3_a1/}
}
TY - JOUR AU - A. M. Vershik AU - G. A. Veprev AU - P. B. Zatitskii TI - Dynamics of metrics in measure spaces and scaling entropy JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 443 EP - 499 VL - 78 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2023_78_3_a1/ LA - en ID - RM_2023_78_3_a1 ER -
A. M. Vershik; G. A. Veprev; P. B. Zatitskii. Dynamics of metrics in measure spaces and scaling entropy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 443-499. http://geodesic.mathdoc.fr/item/RM_2023_78_3_a1/
[1] T. Adams, “Genericity and rigidity for slow entropy transformations”, New York J. Math., 27 (2021), 393–416 | MR | Zbl
[2] D. J. Aldous, “Exchangeability and related topics”, École d'été de probabilités de Saint-Flour XIII – 1983, Lecture Notes in Math., 1117, Springer, Berlin, 1985, 1–198 | DOI | MR | Zbl
[3] T. Austin, E. Glasner, J.-P. Thouvenot, and B. Weiss, “An ergodic system is dominant exactly when it has positive entropy”, Ergodic Theory Dynam. Systems, 2022, 1–15, Publ. online | DOI
[4] V. I. Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of research”, Russian Math. Surveys, 77:5 (2022), 769–817 | DOI | MR | Zbl
[5] V. I. Bogachev, A. N. Kalinin, and S. N. Popova, “On the equality of values in the Monge and Kantorovich problems”, J. Math. Sci. (N. Y.), 238:4 (2019), 377–389 | DOI | MR | Zbl
[6] E. Bogomolny, O. Bohigas, and C. Schmit, “Spectral properties of distance matrices”, J. Phys. A, 36:12 (2003), 3595–3616 | DOI | MR | Zbl
[7] P. J. Cameron and A. M. Vershik, “Some isometry groups of the Urysohn space”, Ann. Pure Appl. Logic, 143:1-3 (2006), 70–78 | DOI | MR | Zbl
[8] T. Downarowicz and J. Serafin, “Universal systems for entropy intervals”, J. Dynam. Differential Equations, 29:4 (2017), 1411–1422 | DOI | MR | Zbl
[9] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 187–207 | DOI | MR | Zbl
[10] S. Ferenczi and K. K. Park, “Entropy dimensions and a class of constructive examples”, Discrete Contin. Dyn. Syst., 17:1 (2007), 133–141 | DOI | MR | Zbl
[11] S. Gadgil and M. Krishnapur, “Lipschitz correspondence between metric measure spaces and random distance matrices”, Int. Math. Res. Not. IMRN, 2013:24 (2013), 5623–5644 | DOI | MR | Zbl
[12] I. V. Girsanov, “Spectra of dynamical systems generated by stationary Gaussian processes”, Dokl. Akad. Nauk SSSR, 119:5 (1958), 851–853 (Russian) | MR | Zbl
[13] A. Greven, P. Pfaffelhuber, and A. Winter, “Convergence in distribution of random metric measure spaces ($\Lambda$-coalescent measure trees)”, Probab. Theory Related Fields, 145:1-2 (2009), 285–322 | DOI | MR | Zbl
[14] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Transl. from the French, Progr. Math., 152, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl
[15] H. A. Helfgott, “Growth and generation in $\operatorname{SL}_2(\mathbb Z/p\mathbb Z)$”, Ann. of Math. (2), 167:2 (2008), 601–623 | DOI | MR | Zbl
[16] L. Hogben and C. Reinhart, “Spectra of variants of distance matrices of graphs and digraphs: a survey”, Matematica, 1:1 (2022), 186–224 | DOI | MR
[17] H. E. Jordan, “Group-characters of various types of linear groups”, Amer. J. Math., 29:4 (1907), 387–405 | DOI | MR | Zbl
[18] K. Juschenko and N. Monod, “Cantor systems, piecewise translations and simple amenable groups”, Ann. of Math. (2), 178:2 (2013), 775–787 | DOI | MR | Zbl
[19] S. Kakutani, “A problem of equidistribution on the unit interval $[0,1]$”, Measure theory (Oberwolfach 1975), Lecture Notes in Math., 541, Springer, Berlin, 1976, 369–375 | DOI | MR | Zbl
[20] A. Kanigowski, “Slow entropy for some smooth flows on surfaces”, Israel J. Math., 226:2 (2018), 535–577 | DOI | MR | Zbl
[21] A. Kanigowski, A. Katok, and D. Wei, Survey on entropy-type invariants of sub-exponential growth in dynamical systems, 2020, 47 pp., arXiv: 2004.04655v1
[22] A. Kanigowski, K. Vinhage, and D. Wei, “Slow entropy of some parabolic flows”, Comm. Math. Phys., 370:2 (2019), 449–474 | DOI | MR | Zbl
[23] L. V. Kantorovich, “On the translocation of masses”, Dokl. Akad. Nauk SSSR, 37:7–8 (1942), 227–229 ; English transl. in J. Math. Sci. (N. Y.), 133:4 (2006), 1381–1382 | Zbl | DOI | MR | Zbl
[24] A. Katok and J.-P. Thouvenot, “Slow entropy type invariants and smooth realization of commuting measure-preserving transformations”, Ann. Inst. H. Poincaré Probab. Statist., 33:3 (1997), 323–338 | DOI | MR | Zbl
[25] A. S. Kechris, Global aspects of ergodic group actions, Math. Surveys Monogr., 160, Amer. Math. Soc., Providence, RI, 2010, xii+237 pp. | DOI | MR | Zbl
[26] A. N. Kolmogorov, “New metric invariant of transitive dynamical systems and automorphisms of Lebesgues spaces”, Selected works of A. N. Kolmogorov, v. III, Math. Appl. (Soviet Ser.), 27, Kluwer Acad. Publ., Dordrecht, 1993, 57–61 | DOI | MR | Zbl
[27] A. N. Kolmogorov, “The theory of transmission of information”, Selected works of A. N. Kolmogorov, v. III, Math. Appl. (Soviet Ser.), 27, Kluwer Acad. Publ., Dordrecht, 1993, 6–32 | DOI | MR | Zbl
[28] V. Koltchinskii and E. Giné, “Random matrix approximation of spectra of integral operators”, Bernoulli, 6:1 (2000), 113–167 | DOI | MR | Zbl
[29] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory serial Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | DOI | MR | Zbl
[30] W. Krieger, “On entropy and generators of measure-preserving transformations”, Trans. Amer. Math. Soc., 149 (1970), 453–464 | DOI | MR | Zbl
[31] A. G. Kushnirenko, “On metric invariants of entropy type”, Russian Math. Surveys, 22:5 (1967), 53–61 | DOI | MR | Zbl
[32] A. A. Lodkin, I. E. Manaev, and A. R. Minabutdinov, “Asymptotic behavior of the scaling entropy of the Pascal adic transformation”, J. Math. Sci. (N. Y.), 174:1 (2011), 28–35 | DOI | MR | Zbl
[33] A. Lott, “Zero entropy actions of amenable groups are not dominant”, Ergodic Theory Dynam. Systems, 2023, 1–16, Publ. online | DOI
[34] L. Motto Ros, “Can we classify complete metric spaces up to isometry?”, Boll. Unione Mat. Ital., 10:3 (2017), 369–410 | DOI | MR | Zbl
[35] D. S. Ornstein and B. Weiss, “Entropy and isomorphism theorems for actions of amenable groups”, J. Analyse Math., 48:1 (1987), 1–141 | DOI | MR | Zbl
[36] F. Petrov, “Correcting continuous hypergraphs”, St. Petersburg Math. J., 28:6 (2017), 783–787 | DOI | MR | Zbl
[37] L. Pyber and E. Szabó, “Growth in finite simple groups of Lie type”, J. Amer. Math. Soc., 29:1 (2016), 95–146 | DOI | MR | Zbl
[38] M. Queffélec, Substitution dynamical systems – spectral analysis, Lecture Notes in Math., 1294, 2nd ed., Springer-Verlag, Berlin, 2010, xvi+351 pp. | DOI | MR | Zbl
[39] V. A. Rohlin (Rokhlin), On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., 1952, no. 71, Amer. Math. Soc., Providence, RI, 1952, 55 pp. | MR | Zbl
[40] V. A. Rokhlin, “Metric classification of measurable functions”, Uspekhi Mat. Nauk, 12:2(74) (1957), 169–174 (Russian) | MR | Zbl
[41] V. A. Rokhlin, “Lectures on the entropy theory of measure-preserving transformations”, Russian Math. Surveys, 22:5 (1967), 1–52 | DOI | MR | Zbl
[42] V. V. Ryzhikov, “Compact families and typical entropy invariants of measure-preserving actions”, Trans. Moscow Math. Soc., 82 (2021), 117–123 | DOI | MR | Zbl
[43] J. Schur, “Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen”, J. Reine Angew. Math., 132 (1907), 85–137 | DOI | MR | Zbl
[44] J. Serafin, “Non-existence of a universal zero-entropy system”, Israel J. Math., 194:1 (2013), 349–358 | DOI | MR | Zbl
[45] C. E. Shannon, “A mathematical theory of communication”, Bell System Tech. J., 27:3, 4 (1948), 379–423, 623–656 | DOI | MR | Zbl
[46] K.-T. Sturm, The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces, 2020 (v1 – 2012), 88 pp., arXiv: 1208.0434
[47] P. S. Urysohn, “Sur un espace métrique universel”, Bull. Sci. Math. (2), 51 (1927), 43–64, 74–96 | Zbl
[48] G. A. Veprev, “Scaling entropy of unstable systems”, Representation theory, dynamical systems, combinatorial methods. XXXI, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 498, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2020, 5–17 ; G. A. Veprev, “Scaling entropy of unstable systems”, J. Math. Sci. (N. Y.), 255:2 (2021), 109–118 | MR | Zbl | DOI
[49] G. A. Veprev, “The scaling entropy of a generic action”, Representation theory, dynamical systems, combinatorial methods. XXXIII, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 507, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2021, 5–14 ; English transl. in J. Math. Sci. (N. Y.), 261:5 (2022), 595–600 | MR | Zbl | DOI
[50] G. Veprev, Non-existence of a universal zero entropy system via generic actions of almost complete growth, 2022, 12 pp., arXiv: 2209.01902
[51] G. Veprev, “Non-existence of a universal zero entropy system for non-periodic amenable group actions”, Israel J. Math., 253 (2023), 715–743 | DOI
[52] A. M. Vershik, “A spectral and metrical isomorphism of certain normal dynamical systems”, Dokl. Akad. Nauk SSSR, 144:2 (1962), 255–257 (Russian) | MR
[53] A. M. Vershik, “Uniform algebraic approximation of shift and multiplication operators”, Soviet Math. Dokl., 24 (1981), 97–100 | MR | Zbl
[54] A. M. Vershik, “A theorem on the Markov periodic approximation in ergodic theory”, Boundary-value problems of mathematical physics and related problems of function, Zap. Nauchn. Sem. Leningrad. Otdel. Mat Inst. Steklov., 115, Nauka, Leningrad branch, Leningrad, 1982, 72–82 ; English transl. in J. Soviet Math., 28:5 (1985), 667–674 | MR | Zbl | DOI
[55] A. M. Vershik, “The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers”, Russian Math. Surveys, 53:5 (1998), 921–928 | DOI | MR | Zbl
[56] A. M. Vershik, “A random metric space is the universal Urysohn space”, Dokl. Math., 66:3 (2002), 421–424 | MR | Zbl
[57] A. M. Vershik, Distance matrices, random metrics and Urysohn space, The MPIM preprint series, no. 2002-8, Max-Planck-Institut für Mathematik, Bonn, 2002, 19 pp. https://archive.mpim-bonn.mpg.de/id/eprint/2119/
[58] A. M. Vershik, “Classification of measurable functions of several variables and invariantly distributed random matrices”, Funct. Anal. Appl., 36:2 (2002), 93–105 | DOI | MR | Zbl
[59] A. M. Vershik, “Random and universal metric spaces”, Fundamental mathematics today, Moscow Center for Continuous Mathematical Education, Moscow, 2003, 54–88 (Russian) | MR | Zbl
[60] A. M. Vershik, “Kantorovich metric: initial history and little-known applications”, Representation theory, dynamical systems. XI, Special issue, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 312, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2004, 69–85 ; English transl. in J. Math. Sci. (N. Y.), 133:4 (2006), 1410–1417 | MR | Zbl | DOI
[61] A. M. Vershik, “Random metric spaces and universality”, Russian Math. Surveys, 59:2 (2004), 259–295 | DOI | MR | Zbl
[62] A. M. Vershik, “Information, Entropy, Dynamics”, Mathematics of the XXth Century: A View from St. Petersburg, Moscow Center for Continuous Mathematical Education, Moscow, 2010, 47–76 (Russian)
[63] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl
[64] A. M. Vershik, “Scaling entropy and automorphisms with pure point spectrum”, St. Petersburg Math. J., 23:1 (2012), 75–91 | DOI | MR | Zbl
[65] A. M. Vershik, “The Pascal automorphism has a continuous spectrum”, Funktsional. Anal. i Prilozhen., 45:3 (2011), 173–186 | DOI | MR | Zbl
[66] A. M. Vershik, “Long history of the Monge–Kantorovich transportation problem”, Math. Intelligencer, 35:2 (2013), 1–9 | DOI | MR | Zbl
[67] A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence”, Russian Math. Surveys, 72:2 (2017), 257–333 | DOI | MR | Zbl
[68] A. M. Vershik, “One-dimensional central measures on numberings of ordered sets”, Funct. Anal. Appl., 56:4 (2022), 251–256 | DOI | Zbl
[69] A. M. Vershik, “Classification of measurable functions of several arguments and matrix distributions”, Functsional. Anal. Prikozhen., 57:4 (2023), 46–59 (Russian) | DOI
[70] A. M. Vershik and U. Haböck, “Compactness of the congruence group of measurable functions in several variables”, Computational methods and algorithms. XIX, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 334, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2006, 57–67 ; J. Math. Sci. (N. Y.), 141:6 (2007), 1601–1607 | MR | Zbl | DOI
[71] A. M. Vershik and U. Haböck, “On the classification problem of measurable functions in several variables and on matrix distributions”, Probability and statistics. 22, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 441, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2015, 119–143 ; J. Math. Sci. (N. Y.), 219:5 (2016), 683–699 | MR | Zbl | DOI
[72] A. M. Vershik and M. A. Lifshits, “On mm-entropy of a Banach space with Gaussian measure”, Theory Probab. Appl., 68:3 (2023), 431–439 | DOI
[73] A. M. Vershik and A. N. Livshits, “Adic models of ergodic transformations, spectral theory, substitutions, and related topics”, Representation theory and dynamical systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992, 185–204 | DOI | MR | Zbl
[74] A. M. Vershik and F. V. Petrov, “Limit spectral measures of the matrix distributions of the metric triples”, Funktsional. Anal. i Prilozhen., 57:2 (2023), 106–110 (Russian)
[75] A. M. Vershik and P. B. Zatitskii, “Universal adic approximation, invariant measures and scaled entropy”, Izv. Math., 81:4 (2017), 734–770 | DOI | MR | Zbl
[76] A. M. Vershik and P. B. Zatitskii, “On a universal Borel adic space”, Representation theory, dynamical systems, combinatorial methods. XXIX, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 468, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2018, 24–38 ; English transl. in J. Math. Sci. (N. Y.), 240:5 (2019), 515–524 | MR | Zbl | DOI
[77] A. M. Vershik and P. B. Zatitskiy (Zatitskii), “Combinatorial invariants of metric filtrations and automorphisms; the universal adic graph”, Funct. Anal. Appl., 52:4 (2018), 258–269 | DOI | MR | Zbl
[78] A. M. Vershik, P. B. Zatitskiy (Zatitskii), and F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | MR | Zbl
[79] A. M. Vershik, P. B. Zatitskiy (Zatitskii), and F. V. Petrov, “Virtual continuity of measurable functions of several variables and embedding theorems”, Funct. Anal. Appl., 47:3 (2013), 165–173 | DOI | MR | Zbl
[80] A. M. Vershik, P. B. Zatitskiy (Zatitskii), and F. V. Petrov, “Virtual continuity of measurable functions and its applications”, Russian Math. Surveys, 69:6 (2014), 1031–1063 | DOI | MR | Zbl
[81] Tao Yu, Guohua Zhang, and Ruifeng Zhang, “Discrete spectrum for amenable group actions”, Discrete Contin. Dyn. Syst., 41:12 (2021), 5871–5886 | DOI | MR | Zbl
[82] P. B. Zatitskiy (Zatitskii), “On a scaling entropy sequence of a dynamical system”, Funct. Anal. Appl., 48:4 (2014), 291–294 | DOI | MR | Zbl
[83] P. B. Zatitskii, Scaling entropy sequence as a metric invariant of dynamical systems, PhD thesis, St. Petersburg Department of Steklov Mathematical Institute, St Petersburg, 2014, 87 pp. (Russian)
[84] P. B. Zatitskiy (Zatitskii), “Scaling entropy sequence: invariance and examples”, Representation theory, dynamical systems, combinatorial methods. XXIV, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 432, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2015, 128–161 ; English transl. in J. Math. Sci. (N. Y.), 209:6 (2015), 890–909 | Zbl | DOI | MR
[85] P. B. Zatitskiy (Zatitskii), “On the possible growth rate of a scaling entropy sequence”, Representation theory, dynamical systems, combinatorial methods. XXV, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 436, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2015, 136–166 ; English transl. in J. Math. Sci. (N. Y.), 215:6 (2016), 715–733 | MR | Zbl | DOI
[86] P. B. Zatitskiy (Zatitskii) and F. V. Petrov, “Correction of metrics”, Representation theory, dynamical systems, combinatorial methods. XX, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2011, 201–209 ; English transl. in J. Math. Sci. (N. Y.), 181:6 (2012), 867–870 | MR | Zbl | DOI
[87] P. B. Zatitskiy (Zatitskii) and F. V. Petrov, “On the subadditivity of a scaling entropy sequence”, Representation theory, dynamical systems, combinatorial methods. XXV, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 436, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2015, 167–173 ; English transl. in J. Math. Sci. (N. Y.), 215:6 (2016), 734–737 | MR | Zbl | DOI
[88] Yun Zhao and Ya. Pesin, “Scaled entropy for dynamical systems”, J. Stat. Phys., 158:2 (2015), 447–475 ; “Erratum to: Scaled entropy for dynamical systems”, 162:6 (2016), 1654–1660 | DOI | MR | Zbl | DOI | MR