Existence, uniqueness, and stability of best and near-best approximations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 399-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Existence and stability of $\varepsilon$-selections (selections of operators of near-best approximation) are studied. Results relating the existence of continuous $\varepsilon$-selections with other approximative and structural properties of approximating sets are given. Both abstract and concrete sets are considered — the latter include $n$-link piecewise linear functions, $n$-link $r$-polynomial functions and their generalizations, $k$-monotone functions, and generalized rational functions. Classical problems of the existence, uniqueness, and stability of best and near-best generalized rational approximations are considered. Bibliography: 70 titles.
Keywords: generalized rational functions, $\varepsilon$-selection, near-best approximant, sun, monotone path-connected set, stability of approximation, piecewise-polynomial function.
@article{RM_2023_78_3_a0,
     author = {A. R. Alimov and K. S. Ryutin and I. G. Tsar'kov},
     title = {Existence, uniqueness, and stability of best and near-best approximations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {399--442},
     year = {2023},
     volume = {78},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_3_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - K. S. Ryutin
AU  - I. G. Tsar'kov
TI  - Existence, uniqueness, and stability of best and near-best approximations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 399
EP  - 442
VL  - 78
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_3_a0/
LA  - en
ID  - RM_2023_78_3_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%A K. S. Ryutin
%A I. G. Tsar'kov
%T Existence, uniqueness, and stability of best and near-best approximations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 399-442
%V 78
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2023_78_3_a0/
%G en
%F RM_2023_78_3_a0
A. R. Alimov; K. S. Ryutin; I. G. Tsar'kov. Existence, uniqueness, and stability of best and near-best approximations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 3, pp. 399-442. http://geodesic.mathdoc.fr/item/RM_2023_78_3_a0/

[1] A. R. Alimov, “Universality theorems for asymmetric spaces”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2022, 2250017, Publ. online | DOI

[2] A. R. Alimov, “Strict protosuns in asymmetric spaces of continuous functions”, Results Math., 78:3 (2023), 95, 15 pp. | DOI | MR | Zbl

[3] A. R. Alimov and I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | MR | Zbl

[4] A. R. Alimov and I. G. Tsar'kov, “Smoothness of subspace sections of the unit balls of $C(Q)$ and $L^1$”, J. Approx. Theory, 265 (2021), 105552, 8 pp. | DOI | MR | Zbl

[5] A. R. Alimov and I. G. Tsar'kov, Geometric approximation theory, Springer Monogr. Math., Springer, Cham, 2021, xxi+508 pp. | DOI | MR | Zbl

[6] A. R. Alimov and I. G. Tsar'kov, “Suns, moons, and ${\mathring B}$-complete sets in asymmetric spaces”, Set-Valued Var. Anal., 30:3 (2022), 1233–1245 | DOI | MR | Zbl

[7] A. R. Alimov and I. G. Tsar'kov, “Some classical problems of geometric approximation theory in asymmetric spaces”, Math. Notes, 112:1 (2022), 3–16 | DOI | MR | Zbl

[8] A. R. Alimov and I. G. Tsar'kov, “Solarity and proximinality in generalized rational approximation in spaces $C(Q)$ and $L^p$”, Russ. J. Math. Phys., 29:3 (2022), 291–305 | DOI | MR | Zbl

[9] M. V. Balashov, “The Pliś metric and Lipschitz stability of minimization problems”, Sb. Math., 210:7 (2019), 911–927 | DOI | MR | Zbl

[10] M. V. Balashov, “Stability of minimization problems and the error bound condition”, Set-Valued Var. Anal., 30:3 (2022), 1061–1076 | DOI | MR | Zbl

[11] M. V. Balashov and D. Repovš, “Uniform convexity and the splitting problem for selections”, J. Math. Anal. Appl., 360:1 (2009), 307–316 | DOI | MR | Zbl

[12] V. I. Berdyšev, “Continuity of a multivalued mapping connected with the problem of minimizing a functional”, Math. USSR-Izv., 16:3 (1981), 431–456 | DOI | MR | Zbl

[13] V. I. Berdyshev, “Variation of the norms in the problem of best approximation”, Math. Notes, 29:2 (1981), 95–103 | DOI | MR | Zbl

[14] V. I. Berdyshev and L. V. Petrak, Approximation of functions, numerical data compression, and applications, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 1999, 297 pp. (Russian) | MR | Zbl

[15] D. Braess, Nonlinear approximation theory, Springer Ser. Comput. Math., 7, Springer-Verlag, Berlin, 1986, xiv+290 pp. | DOI | MR | Zbl

[16] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[17] Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp. | DOI | MR | Zbl

[18] S. Cobzaş, “Compact bilinear operators on asymmetric normed spaces”, Topology Appl., 306 (2022), 107922, 23 pp. | DOI | MR | Zbl

[19] F. R. Cohen, R. L. Cohen, B. M. Mann, and R. J. Milgram, “The topology of rational functions and divisors of surfaces”, Acta Math., 166:3-4 (1991), 163–221 | DOI | MR | Zbl

[20] F. Deutsch, “Existence of best approximations”, J. Approx. Theory, 28:2 (1980), 132–154 | DOI | MR | Zbl

[21] R. Díaz Millán, V. Peiris, N. Sukhorukova, and J. Ugon, “Multivariate approximation by polynomial and generalized rational functions”, Optimization, 71:4 (2022), 1171–1187 | DOI | MR | Zbl

[22] R. Díaz Millán, N. Sukhorukova, and J. Ugon, “An algorithm for best generalised rational approximation of continuous functions”, Set-Valued Var. Anal., 30:3 (2022), 923–941 | DOI | MR | Zbl

[23] M. Dolbeault and A. Cohen, “Optimal pointwise sampling for $L^2$ approximation”, J. Complexity, 68 (2022), 101602, 12 pp. | DOI | MR | Zbl

[24] V. Donjuán and N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR | Zbl

[25] T. Drezner and Z. Drezner, “Asymmetric distance location model”, INFOR Inf. Syst. Oper. Res., 59:1 (2021), 102–110 | DOI | MR | Zbl

[26] R. J. Duffin and L. A. Karlovitz, “Formulation of linear programs in analysis. I. Approximation theory”, SIAM J. Appl. Math., 16:4 (1968), 662–675 | DOI | MR | Zbl

[27] B. González Merino, T. Jahn, and C. Richter, “Uniqueness of circumcenters in generalized Minkowski spaces”, J. Approx. Theory, 237 (2019), 153–159 | DOI | MR | Zbl

[28] C. Hofreither, “An algorithm for best rational approximation based on barycentric rational interpolation”, Numer. Algorithms, 88:1 (2021), 365–388 | DOI | MR | Zbl

[29] T. Jahn and C. Richter, “Coproximinality of linear subspaces in generalized Minkowski spaces”, J. Math. Anal. Appl., 504:1 (2021), 125351, 10 pp. | DOI | MR | Zbl

[30] D. Kamuntavičius, “Test for the existence of finite-dimensional Chebyshev subspaces in $L_\phi$ spaces”, Lithuanian Math. J., 30:1 (1990), 27–35 | DOI | MR | Zbl

[31] P. Kirchberger, Über Tschebyscheffsche Annäherungsmethoden, Inauguraldissertation, Univ. Göttingen, Göttingen, 1902

[32] S. V. Konyakin, “Continuous operators of generalized rational approximation”, Mat. Zametki, 44:3 (1988), 404 (Russian) | MR | Zbl

[33] S. V. Konyagin, “Uniform continuity of operators of rational approximation”, Approximation theory and problems in numerical mathematics, Abstracts of talks, Publishing hounse of Dnepropetrovsk University, Dnepropetrovsk, 1993, 108 (Russian)

[34] F. D. Kovac and F. E. Levis, “Extended best $L^p$-approximation is near-best approximation in $L^q$, $p-1\le q

$”, J. Approx. Theory, 284 (2022), 105819, 7 pp. | DOI | MR | Zbl

[35] M. G. Krein and A. A. Nudel'man, The Markov moment problem and extremal problems, Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | Zbl

[36] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | MR | Zbl

[37] E. D. Livshits, “On almost-best approximation by piecewise polynomial functions in the space $C[0,1]$”, Math. Notes, 78:4 (2005), 586–591 | DOI | MR | Zbl

[38] G. G. Lorentz, M. von Golitschek, and Y. Makovoz, Constructive approximation. Advanced problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996, xii+649 pp. | MR | Zbl

[39] H. Maehly and Ch. Witzgall, “Tschebyscheff-Approximationen in kleinen Intervallen. II. Stetigkeitssätze für gebrochen rationale Approximationen”, Numer. Math., 2 (1960), 293–307 | DOI | MR | Zbl

[40] A. V. Marinov, “Stability estimates of continuous selections for metric almost-projections”, Math. Notes, 55:4 (1994), 367–371 | DOI | MR | Zbl

[41] A. V. Marinov, “Lipschitz selections of the operator of metric $\varepsilon$-projection onto the generalized rational fractions”, Corrent methods of the theory of functions and related problems, Abstracts of talks at the Voronezh Winter Mathematical School, Voronezh State University, Voronezh, 2001, 183–184 (Russian)

[42] Y. Nakatsukasa and A. Townsend, “Error localization of best $L_1$ polynomial approximants”, SIAM J. Numer. Anal., 59:1 (2021), 314–333 | DOI | MR | Zbl

[43] P. L. Papini and J. Puerto, “Location problems with different norms for different points”, J. Optim. Theory Appl., 125:3 (2005), 673–695 | DOI | MR | Zbl

[44] V. Peiris, “Rational and generalised rational Chebyshev approximation problems and their applications”, Bull. Aust. Math. Soc., 107:2 (2023), 349–350 | DOI | MR

[45] V. Peiris, N. Sharon, N. Sukhorukova, and J. Ugon, “Generalised rational approximation and its application to improve deep learning classifiers”, Appl. Math. Comput., 389 (2021), 125560, 10 pp. | DOI | MR | Zbl

[46] P. P. Petrushev and V. A. Popov, Rational approximation of real functions, Encyclopedia Math. Appl., 28, Cambridge Univ. Press, Cambridge, 1987, xii+371 pp. | DOI | MR | Zbl

[47] F. Plastria, “Using the power of ideal solutions: simple proofs of some old and new results in location theory”, 4OR, 19:3 (2021), 449–467 | DOI | MR | Zbl

[48] D. Repovš and P. V. Semenov, Continuous selections of multivalued mappings, Math. Appl., 455, Kluwer Acad. Publ., Dordrecht, 1998, viii+356 pp. | DOI | MR | Zbl

[49] K. C. Ryutin, “Lipshitz retractions and the operator of generalized rational approximatio”, Fundam. Prikl. Mat., 6:4 (2000), 1205–1220 (Russian) | MR | Zbl

[50] K. S. Ryutin, Approximate properties of generalized rational functions, PhD thesis, Moscow State University, Moscow, 2002, 92 pp. (Russian)

[51] K. S. Rjutin (Ryutin), “On continuous operators of generalized rational approximation in $L_p$ spaces”, East J. Approx., 8:2 (2002), 151–159 | MR | Zbl

[52] K. S. Ryutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | MR | Zbl

[53] K. S. Ryutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | MR | Zbl

[54] K. S. Ryutin, “On uniformly continuous almost best generalized rational approximation operators”, Math. Notes, 87:1 (2010), 141–145 | DOI | MR | Zbl

[55] N. Sukhorukova and J. Ugon, “A generalisation of de la Vallée-Poussin procedure to multivariate approximations”, Adv. Comput. Math., 48:1 (2022), 5, 19 pp. | DOI | MR | Zbl

[56] N. M. Tran, P. Burdejová, M. Ospienko, and W. K. Härdle, “Principal component analysis in an asymmetric norm”, J. Multivariate Anal., 171 (2019), 1–21 | DOI | MR | Zbl

[57] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl

[58] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl

[59] I. G. Tsar'kov, “On $\varepsilon$-samples”, Dokl. Math., 54:1 (1996), 618–619 | MR | Zbl

[60] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | MR | Zbl

[61] I. G. Tsar'kov, “Some applications of the geometric theory of approximations”, J. Math. Sci. (N. Y.), 245:1 (2020), 64–82 | DOI | MR | Zbl

[62] I. G. Tsar'kov, “Continuous $\varepsilon$-selection and monotone path-connected sets”, Math. Notes, 101:6 (2017), 1040–1049 | DOI | MR | Zbl

[63] I. G. Tsar'kov, “Continuous selection for set-valued mappings”, Izv. Math., 81:3 (2017), 645–669 | DOI | MR | Zbl

[64] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859 | DOI | MR | Zbl

[65] I. G. Tsar'kov, “Continuous selections in asymmetric spaces”, Sb. Math., 209:4 (2018), 560–579 | DOI | MR | Zbl

[66] I. G. Tsar'kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Sb. Math., 210:9 (2019), 1326–1347 | DOI

[67] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Sb. Math., 211:8 (2020), 1190–1211 | DOI | MR | Zbl

[68] I. G. Tsar'kov, “Uniform convexity in nonsymmetric spaces”, Math. Notes, 110:5 (2021), 773–783 | DOI | MR | Zbl

[69] I. G. Tsar'kov, “Properties of Chebyshev generalized rational fractions in $L_1$”, Russ. J. Math. Phys., 29:4 (2022), 583–587 | DOI | MR | Zbl

[70] A. A. Vasil'eva, “Criterion for the existence of a 1-Lipschitz selection from the metric projection onto the set of continuous selections from a multivalued mapping”, J. Math. Sci. (N. Y.), 250 (2020), 454–462 | DOI | MR | Zbl