The number of components of the Pell–Abel equations with primitive solutions of given degree
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 208-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2023_78_1_a5,
     author = {A. B. Bogatyrev and Q. Gendron},
     title = {The number of components of the {Pell{\textendash}Abel} equations with primitive solutions of given degree},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {208--210},
     year = {2023},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
AU  - Q. Gendron
TI  - The number of components of the Pell–Abel equations with primitive solutions of given degree
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 208
EP  - 210
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/
LA  - en
ID  - RM_2023_78_1_a5
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%A Q. Gendron
%T The number of components of the Pell–Abel equations with primitive solutions of given degree
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 208-210
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/
%G en
%F RM_2023_78_1_a5
A. B. Bogatyrev; Q. Gendron. The number of components of the Pell–Abel equations with primitive solutions of given degree. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 208-210. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/

[1] N. H. Abel, J. Reine Angew. Math., 1826:1 (1826), 185–221 | DOI | MR | Zbl

[2] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Moscow Center for Continuous Mathematoical Education, Moscow, 2005, 173 pp. ; English transl. Springer Monogr. Math., Springer, Heidelberg, 2012, xxvi+150 pp. | MR | Zbl | DOI | MR | Zbl

[3] A. B. Bogatyrev, Mat. Sb., 194:10 (2003), 27–48 ; English transl. in Sb. Math., 194:10 (2003), 1451–1473 | DOI | MR | Zbl | DOI

[4] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl

[5] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975, ix+228 pp. | DOI | MR | Zbl