The number of components of the Pell--Abel equations with primitive solutions of given degree
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 208-210

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2023_78_1_a5,
     author = {A. B. Bogatyrev and Q. Gendron},
     title = {The number of components of the {Pell--Abel} equations with primitive solutions of given degree},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {208--210},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
AU  - Q. Gendron
TI  - The number of components of the Pell--Abel equations with primitive solutions of given degree
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 208
EP  - 210
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/
LA  - en
ID  - RM_2023_78_1_a5
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%A Q. Gendron
%T The number of components of the Pell--Abel equations with primitive solutions of given degree
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 208-210
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/
%G en
%F RM_2023_78_1_a5
A. B. Bogatyrev; Q. Gendron. The number of components of the Pell--Abel equations with primitive solutions of given degree. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 208-210. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/