The number of components of the Pell--Abel equations with primitive solutions of given degree
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 208-210
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_2023_78_1_a5,
author = {A. B. Bogatyrev and Q. Gendron},
title = {The number of components of the {Pell--Abel} equations with primitive solutions of given degree},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {208--210},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/}
}
TY - JOUR AU - A. B. Bogatyrev AU - Q. Gendron TI - The number of components of the Pell--Abel equations with primitive solutions of given degree JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 208 EP - 210 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/ LA - en ID - RM_2023_78_1_a5 ER -
%0 Journal Article %A A. B. Bogatyrev %A Q. Gendron %T The number of components of the Pell--Abel equations with primitive solutions of given degree %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 208-210 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/ %G en %F RM_2023_78_1_a5
A. B. Bogatyrev; Q. Gendron. The number of components of the Pell--Abel equations with primitive solutions of given degree. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 208-210. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a5/