Strong and weak associativity of weighted Sobolev spaces of the first order
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 165-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A brief overview of the recent results on the problem of characterization of associative and double associative spaces of function classes, including both ideal and non-ideal structures, is presented. The latter include two-weighted Sobolev spaces of the first order on the positive semi- axis. It is shown that, in contrast to the notion of duality, associativity can be ‘strong’ or ‘weak’. In addition, double associative spaces are further divided into three types. In this context it is established that a weighted Sobolev space of functions with compact support possesses weak associative reflexivity, while the strong associative space of a weak associative space is trivial. Weighted classes of Cesàro and Copson type have similar properties; for these classes the problem us fully investigated, and their connections with Sobolev spaces with power weights are established. As an application, the problem of boundedness of the Hilbert transform from a weighted Sobolev space to a weighted Lebesgue space is considered. Bibliography: 49 titles.
Keywords: function space; dual space; associative space; reflexivity; Sobolev space, Copson space.
Mots-clés : Cesàro space
@article{RM_2023_78_1_a2,
     author = {V. D. Stepanov and E. P. Ushakova},
     title = {Strong and weak associativity of weighted {Sobolev} spaces of the first order},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {165--202},
     year = {2023},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a2/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - E. P. Ushakova
TI  - Strong and weak associativity of weighted Sobolev spaces of the first order
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 165
EP  - 202
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a2/
LA  - en
ID  - RM_2023_78_1_a2
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A E. P. Ushakova
%T Strong and weak associativity of weighted Sobolev spaces of the first order
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 165-202
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2023_78_1_a2/
%G en
%F RM_2023_78_1_a2
V. D. Stepanov; E. P. Ushakova. Strong and weak associativity of weighted Sobolev spaces of the first order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 165-202. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a2/

[1] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl

[2] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line”, Uspekhi Mat. Nauk, 74:6(450) (2019), 119–158 ; English transl. in Russian Math. Surveys, 74:6 (2019), 1075–1115 | DOI | MR | Zbl | DOI

[3] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5–6 (2017), 890–912 | DOI | MR | Zbl

[4] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120, no. 576, Amer. Math. Soc., Providence, RI, 1996, viii+130 pp. | DOI | MR | Zbl

[5] K.-G. Grosse-Erdmann, The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Math., 1679, Springer-Verlag, Berlin, 1998, x+114 pp. | DOI | MR | Zbl

[6] S. V. Astashkin and L. Maligranda, “Structure of Cesàro function spaces: a survey”, Function spaces X, Banach Center Publ., 102, Polish Acad. Sci. Inst. Math., Warsaw, 2014, 13–40 | DOI | MR | Zbl

[7] K. Leśnik and L. Maligranda, “Abstract Cesàro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951 | DOI | MR | Zbl

[8] B. D. Hassard and D. A. Hussein, “On Cesàro function spaces”, Tamkang J. Math., 4 (1973), 19–25 | MR | Zbl

[9] A. Kamińska and D. Kubiak, “On the dual of Cesàro function space”, Nonlinear Anal., 75:5 (2012), 2760–2773 | DOI | MR | Zbl

[10] G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216 | MR | Zbl

[11] M. Carro, A. Gogatishvili, J. Martin, and L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332 | MR | Zbl

[12] V. D. Stepanov, “On spaces associated with weighted Cesàro and Copson spaces”, Mat. Zametki, 111:3 (2022), 443–450 ; English transl. in Math. Notes, 111:3 (2022), 470–477 | DOI | MR | Zbl | DOI

[13] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | DOI | MR | Zbl

[14] A. Gogatishvili and V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Uspekhi Mat. Nauk, 68:4(412) (2013), 3–68 ; English transl. in Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | MR | Zbl | DOI

[15] V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | DOI | MR | Zbl

[16] G. Sinnamon, “Hardy's inequality and monotonicity”, Function spaces, differential operators and nonlinear analysis (Milovy 2004), Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 292–310

[17] S. V. Astashkin and L. Maligranda, “Structure of Cesàro function spaces”, Indag. Math. (N. S.), 20:3 (2009), 329–379 | DOI | MR | Zbl

[18] M. L. Goldman and P. P. Zabreiko, “Optimal reconstruction of a Banach function space from a cone of nonnegative functions”, Function spaces and related problems of analysis, Tr. Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 142–156 ; English transl. in Proc. Steklov Inst. Math., 284 (2014), 133–147 | DOI | MR | Zbl | DOI

[19] V. D. Stepanov, “On optimal Banach spaces containing a weight cone of monotone or quasiconcave functions”, Mat. Zametki, 98:6 (2015), 907–922 ; English transl. in Math. Notes, 98:6 (2015), 957–970 | DOI | MR | Zbl | DOI

[20] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | Zbl

[21] D. V. Prokhorov, “On the associated spaces for altered Cesàro space”, Anal. Math., 48:4 (2022), 1169–1183 | DOI | MR

[22] D. V. Prokhorov, “On the dual spaces for weighted altered Cesàro and Copson spaces”, J. Math. Anal. Appl., 514:2 (2022), 126325, 11 pp. | DOI | MR | Zbl

[23] V. D. Stepanov, “On Cesàro and Copson type function spaces. Reflexivity”, J. Math. Anal. Appl., 507:1 (2022), 125764, 18 pp. | DOI | MR | Zbl

[24] R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp. | MR | Zbl

[25] S. L. Sobolev, Some applications of functional analysis in mathematical physics, 3rd ed., rev. and compl., Nauka, Moscow, 1988, 334 pp. ; English transl. in Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | Zbl | DOI | MR | Zbl

[26] A. Kamińska and M. Żyluk, “Uniform convexity, reflexivity, superreflexivity and $B$ convexity of generalized Sobolev spaces $W^{1,\Phi}$”, J. Math. Anal. Appl., 509:1 (2022), 125925, 31 pp. | DOI | MR | Zbl

[27] A. Kalybay and R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48 | DOI | MR | Zbl

[28] A. Kalybay and R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space for $1

\infty$”, Math. Inequal. Appl., 25:1 (2022), 17–26 | DOI | MR | Zbl

[29] A. Kalybay and R. Oinarov, “Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space”, Turkish J. Math., 43:1 (2019), 301–315 | DOI | MR | Zbl

[30] R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izv. Ross. Akad. Nauk Ser. Mat., 78:4 (2014), 207–223 ; English transl. in Izv. Math., 78:4 (2014), 836–853 | DOI | MR | Zbl | DOI

[31] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1021–1038 | DOI | MR | Zbl

[32] A. A. Belyaev and A. A. Shkalikov, “Multipliers in spaces of Bessel potentials: the case of indices of nonnegative smoothness”, Mat. Zametki, 102:5 (2017), 684–699 ; English transl. in Math. Notes, 102:5 (2017), 632–644 | DOI | MR | Zbl | DOI

[33] A. A. Belyaev and A. A. Shkalikov, “Multipliers in Bessel potential spaces with smoothness indices of different sign”, Algebra i Analiz, 30:2 (2018), 76–96 ; English transl. in St. Petersburg Math. J., 30:2 (2019), 203–218 | MR | Zbl | DOI

[34] J.-G. Bak and A. A. Shkalikov, “Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials”, Mat. Zametki, 71:5 (2002), 643–651 ; English transl. in Math. Notes, 71:5 (2002), 587–594 | DOI | MR | Zbl | DOI

[35] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl

[36] S. P. Eveson, V. D. Stepanov, and E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8–9 (2015), 877–897 | DOI | MR | Zbl

[37] A. Kufner, L.-E. Persson, and N. Samko, Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ., Hackensack, NJ, 2017, xx+459 pp. | DOI | MR | Zbl

[38] V. D. Stepanov and E. P. Ushakova, “On integral operators with variable limits of integration”, Function spaces, harmonic analysis, and differential equations, Trudy Mat. Inst. Steklova, 232, Nauka, MAIK Nauka/Inteperiodika, Moscow, 2001, 298–317 ; English transl. in Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl

[39] G. Leoni, A first course in Sobolev spaces, Grad. Stud. Math., 105, Amer. Math. Soc., Providence, RI, 2009, xvi+607 pp. | DOI | MR | Zbl

[40] K. I. Babenko, “On conjugate functions”, Dokl. Akad. Nauk SSSR, 62:2 (1948), 157–160 (Russian) | MR | Zbl

[41] R. Hunt, B. Muckenhoupt, and R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[42] M. T. Lacey, E. T. Sawyer, Chun-Yen Shen, and I. Uriarte-Tuero, “Two-weight inequality for the Hilbert transform: a real variable characterization. I”, Duke Math. J., 163:15 (2014), 2795–2820 | DOI | MR | Zbl

[43] M. T. Lacey, “Two-weight inequality for the {H}ilbert transform: a real variable characterization. II”, Duke Math. J., 163:15 (2014), 2821–2840 | DOI | MR | Zbl

[44] T. P. Hytönen, “The two-weight inequality for the Hilbert transform with general measures”, Proc. Lond. Math. Soc. (3), 117:3 (2018), 483–526 | DOI | MR | Zbl

[45] E. Liflyand, “Weighted estimates for the discrete Hilbert transform”, Methods of Fourier analysis and approximation theory, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2016, 59–69 | DOI | MR | Zbl

[46] V. D. Stepanov and S. Yu. Tikhonov, “Two power-weight inequalities for the Hilbert transform on the cones of monotone functions”, Complex Var. Elliptic Equ., 56:10–11 (2011), 1039–1047 | DOI | MR | Zbl

[47] V. D. Stepanov, “On the boundedness of the Hilbert transform from weighted Sobolev space to weighted Lebesgue space”, J. Fourier Anal. Appl., 28:3 (2022), 46, 17 pp. | DOI | MR | Zbl

[48] A. M. Abylayeva and L.-E. Persson, “Hardy type inequalities and compactness of a class of integral operators with logarithmic singularities”, Math. Inequal. Appl., 21:1 (2018), 201–215 | DOI | MR | Zbl

[49] V. D. Stepanov and E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl