Mots-clés : Cesàro space
@article{RM_2023_78_1_a2,
author = {V. D. Stepanov and E. P. Ushakova},
title = {Strong and weak associativity of weighted {Sobolev} spaces of the first order},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {165--202},
year = {2023},
volume = {78},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a2/}
}
TY - JOUR AU - V. D. Stepanov AU - E. P. Ushakova TI - Strong and weak associativity of weighted Sobolev spaces of the first order JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 165 EP - 202 VL - 78 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a2/ LA - en ID - RM_2023_78_1_a2 ER -
V. D. Stepanov; E. P. Ushakova. Strong and weak associativity of weighted Sobolev spaces of the first order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 165-202. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a2/
[1] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[2] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line”, Uspekhi Mat. Nauk, 74:6(450) (2019), 119–158 ; English transl. in Russian Math. Surveys, 74:6 (2019), 1075–1115 | DOI | MR | Zbl | DOI
[3] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5–6 (2017), 890–912 | DOI | MR | Zbl
[4] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120, no. 576, Amer. Math. Soc., Providence, RI, 1996, viii+130 pp. | DOI | MR | Zbl
[5] K.-G. Grosse-Erdmann, The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Math., 1679, Springer-Verlag, Berlin, 1998, x+114 pp. | DOI | MR | Zbl
[6] S. V. Astashkin and L. Maligranda, “Structure of Cesàro function spaces: a survey”, Function spaces X, Banach Center Publ., 102, Polish Acad. Sci. Inst. Math., Warsaw, 2014, 13–40 | DOI | MR | Zbl
[7] K. Leśnik and L. Maligranda, “Abstract Cesàro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951 | DOI | MR | Zbl
[8] B. D. Hassard and D. A. Hussein, “On Cesàro function spaces”, Tamkang J. Math., 4 (1973), 19–25 | MR | Zbl
[9] A. Kamińska and D. Kubiak, “On the dual of Cesàro function space”, Nonlinear Anal., 75:5 (2012), 2760–2773 | DOI | MR | Zbl
[10] G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216 | MR | Zbl
[11] M. Carro, A. Gogatishvili, J. Martin, and L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332 | MR | Zbl
[12] V. D. Stepanov, “On spaces associated with weighted Cesàro and Copson spaces”, Mat. Zametki, 111:3 (2022), 443–450 ; English transl. in Math. Notes, 111:3 (2022), 470–477 | DOI | MR | Zbl | DOI
[13] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | DOI | MR | Zbl
[14] A. Gogatishvili and V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Uspekhi Mat. Nauk, 68:4(412) (2013), 3–68 ; English transl. in Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | MR | Zbl | DOI
[15] V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | DOI | MR | Zbl
[16] G. Sinnamon, “Hardy's inequality and monotonicity”, Function spaces, differential operators and nonlinear analysis (Milovy 2004), Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 292–310
[17] S. V. Astashkin and L. Maligranda, “Structure of Cesàro function spaces”, Indag. Math. (N. S.), 20:3 (2009), 329–379 | DOI | MR | Zbl
[18] M. L. Goldman and P. P. Zabreiko, “Optimal reconstruction of a Banach function space from a cone of nonnegative functions”, Function spaces and related problems of analysis, Tr. Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 142–156 ; English transl. in Proc. Steklov Inst. Math., 284 (2014), 133–147 | DOI | MR | Zbl | DOI
[19] V. D. Stepanov, “On optimal Banach spaces containing a weight cone of monotone or quasiconcave functions”, Mat. Zametki, 98:6 (2015), 907–922 ; English transl. in Math. Notes, 98:6 (2015), 957–970 | DOI | MR | Zbl | DOI
[20] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | Zbl
[21] D. V. Prokhorov, “On the associated spaces for altered Cesàro space”, Anal. Math., 48:4 (2022), 1169–1183 | DOI | MR
[22] D. V. Prokhorov, “On the dual spaces for weighted altered Cesàro and Copson spaces”, J. Math. Anal. Appl., 514:2 (2022), 126325, 11 pp. | DOI | MR | Zbl
[23] V. D. Stepanov, “On Cesàro and Copson type function spaces. Reflexivity”, J. Math. Anal. Appl., 507:1 (2022), 125764, 18 pp. | DOI | MR | Zbl
[24] R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp. | MR | Zbl
[25] S. L. Sobolev, Some applications of functional analysis in mathematical physics, 3rd ed., rev. and compl., Nauka, Moscow, 1988, 334 pp. ; English transl. in Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | Zbl | DOI | MR | Zbl
[26] A. Kamińska and M. Żyluk, “Uniform convexity, reflexivity, superreflexivity and $B$ convexity of generalized Sobolev spaces $W^{1,\Phi}$”, J. Math. Anal. Appl., 509:1 (2022), 125925, 31 pp. | DOI | MR | Zbl
[27] A. Kalybay and R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48 | DOI | MR | Zbl
[28] A. Kalybay and R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space for $1
\infty$”, Math. Inequal. Appl., 25:1 (2022), 17–26 | DOI | MR | Zbl[29] A. Kalybay and R. Oinarov, “Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space”, Turkish J. Math., 43:1 (2019), 301–315 | DOI | MR | Zbl
[30] R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izv. Ross. Akad. Nauk Ser. Mat., 78:4 (2014), 207–223 ; English transl. in Izv. Math., 78:4 (2014), 836–853 | DOI | MR | Zbl | DOI
[31] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1021–1038 | DOI | MR | Zbl
[32] A. A. Belyaev and A. A. Shkalikov, “Multipliers in spaces of Bessel potentials: the case of indices of nonnegative smoothness”, Mat. Zametki, 102:5 (2017), 684–699 ; English transl. in Math. Notes, 102:5 (2017), 632–644 | DOI | MR | Zbl | DOI
[33] A. A. Belyaev and A. A. Shkalikov, “Multipliers in Bessel potential spaces with smoothness indices of different sign”, Algebra i Analiz, 30:2 (2018), 76–96 ; English transl. in St. Petersburg Math. J., 30:2 (2019), 203–218 | MR | Zbl | DOI
[34] J.-G. Bak and A. A. Shkalikov, “Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials”, Mat. Zametki, 71:5 (2002), 643–651 ; English transl. in Math. Notes, 71:5 (2002), 587–594 | DOI | MR | Zbl | DOI
[35] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl
[36] S. P. Eveson, V. D. Stepanov, and E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8–9 (2015), 877–897 | DOI | MR | Zbl
[37] A. Kufner, L.-E. Persson, and N. Samko, Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ., Hackensack, NJ, 2017, xx+459 pp. | DOI | MR | Zbl
[38] V. D. Stepanov and E. P. Ushakova, “On integral operators with variable limits of integration”, Function spaces, harmonic analysis, and differential equations, Trudy Mat. Inst. Steklova, 232, Nauka, MAIK Nauka/Inteperiodika, Moscow, 2001, 298–317 ; English transl. in Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl
[39] G. Leoni, A first course in Sobolev spaces, Grad. Stud. Math., 105, Amer. Math. Soc., Providence, RI, 2009, xvi+607 pp. | DOI | MR | Zbl
[40] K. I. Babenko, “On conjugate functions”, Dokl. Akad. Nauk SSSR, 62:2 (1948), 157–160 (Russian) | MR | Zbl
[41] R. Hunt, B. Muckenhoupt, and R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl
[42] M. T. Lacey, E. T. Sawyer, Chun-Yen Shen, and I. Uriarte-Tuero, “Two-weight inequality for the Hilbert transform: a real variable characterization. I”, Duke Math. J., 163:15 (2014), 2795–2820 | DOI | MR | Zbl
[43] M. T. Lacey, “Two-weight inequality for the {H}ilbert transform: a real variable characterization. II”, Duke Math. J., 163:15 (2014), 2821–2840 | DOI | MR | Zbl
[44] T. P. Hytönen, “The two-weight inequality for the Hilbert transform with general measures”, Proc. Lond. Math. Soc. (3), 117:3 (2018), 483–526 | DOI | MR | Zbl
[45] E. Liflyand, “Weighted estimates for the discrete Hilbert transform”, Methods of Fourier analysis and approximation theory, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2016, 59–69 | DOI | MR | Zbl
[46] V. D. Stepanov and S. Yu. Tikhonov, “Two power-weight inequalities for the Hilbert transform on the cones of monotone functions”, Complex Var. Elliptic Equ., 56:10–11 (2011), 1039–1047 | DOI | MR | Zbl
[47] V. D. Stepanov, “On the boundedness of the Hilbert transform from weighted Sobolev space to weighted Lebesgue space”, J. Fourier Anal. Appl., 28:3 (2022), 46, 17 pp. | DOI | MR | Zbl
[48] A. M. Abylayeva and L.-E. Persson, “Hardy type inequalities and compactness of a class of integral operators with logarithmic singularities”, Math. Inequal. Appl., 21:1 (2018), 201–215 | DOI | MR | Zbl
[49] V. D. Stepanov and E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl