Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 65-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Left-invariant optimal control problems on Lie groups are an important class of problems with a large symmetry group. They are theoretically interesting because they can often be investigated in full and general laws can be studied by using these model problems. In particular, problems on nilpotent Lie groups provide a fundamental nilpotent approximation to general problems. Also, left-invariant problems often arise in applications such as classical and quantum mechanics, geometry, robotics, visual perception models, and image processing. The aim of this paper is to present a survey of the main concepts, methods, and results pertaining to left-invariant optimal control problems on Lie groups that can be integrated by elliptic functions. The focus is on describing extremal trajectories and their optimality, the cut time and cut locus, and optimal synthesis. Bibliography: 162 titles.
Keywords: optimal control, geometric control theory, left-invariant problems, sub-Riemannian geometry, Lie groups, optimal synthesis, elliptic functions.
@article{RM_2023_78_1_a1,
     author = {Yu. L. Sachkov},
     title = {Left-invariant optimal control problems on {Lie} groups that are integrable by elliptic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {65--163},
     year = {2023},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a1/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 65
EP  - 163
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a1/
LA  - en
ID  - RM_2023_78_1_a1
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 65-163
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2023_78_1_a1/
%G en
%F RM_2023_78_1_a1
Yu. L. Sachkov. Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 65-163. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a1/

[1] A. Agrachev and D. Barilari, “Sub-Riemannian structures on 3D Lie groups”, J. Dyn. Control Syst., 18:1 (2012), 21–44 | DOI | MR | Zbl

[2] A. Agrachev, D. Barilari, and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp. | DOI | MR | Zbl

[3] A. Agrachev, B. Bonnard, M. Chyba, and I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl

[4] A. Agrachev and A. Marigo, “Nonholonomic tangent spaces: intrinsic construction and rigid dimensions”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 111–120 | DOI | MR | Zbl

[5] A. A. Agrachev and Yu. L. Sachkov, “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38th IEEE conference on decision and control (Phoenix, AZ 1999), v. 1, IEEE, 1999, 431–435 | DOI

[6] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl

[7] A. A. Agrachev and A. V. Sarychev, “Filtrations of a Lie algebra of vector fields and nilpoint approximation of controlled systems”, Dokl. Akad. Nauk SSSR, 295:4 (1987), 777–781 ; English transl. in Dokl. Math., 36:1 (1988), 104–108 | MR | Zbl

[8] N. I. Akhiezer, Elements of the theory of elliptic functions, 2nd ed., Nauka, Moscow, 1970, 304 pp. ; English transl. Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990, viii+237 pp. | MR | Zbl | DOI | MR | Zbl

[9] S. S. Antman, “The influence of elasticity on analysis: modern developments”, Bull. Amer. Math. Soc. (N. S.), 9:3 (1983), 267–291 | DOI | MR | Zbl

[10] A. Anzaldo-Menezes and F. Monroy-Pérez, “Charges in magnetic fields and sub-Riemannian geodesics”, Contemporary trends in nonlinear geometric control theory and its applications (México City 2000), World Sci. Publ., River Edge, NJ, 2002, 183–202 | DOI | MR | Zbl

[11] A. A. Ardentov, “Controlling of a mobile robot with a trailer and its nilpotent approximation”, Regul. Chaotic Dyn., 21:7-8 (2016), 775–791 | DOI | MR | Zbl

[12] A. Ardentov, G. Bor, E. Le Donne, R. Montgomery, and Yu. Sachkov, “Bicycle paths, elasticae and sub-Riemannian geometry”, Nonlinearity, 34:7 (2021), 4661–4683 | DOI | MR | Zbl

[13] A. A. Ardentov and I. S. Gubanov, “Modelling trailer car parking along Markov–Dubins and Reeds–Shepp paths”, Program. Sist. Theor. Prilozhen., 10:4 (2019), 97–110 (Russian) | DOI

[14] A. Ardentov and E. Hakavuori, “Cut time in the sub-Riemannian problem on the Cartan group”, ESAIM Control Optim. Calc. Var., 28 (2022), 12, 19 pp. | DOI | MR | Zbl

[15] A. A. Ardentov, Y. L. Karavaev, and K. S. Yefremov, “Euler elasticas for optimal control of the motion of mobile wheeled robots: the problem of experimental realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328 | DOI | MR | Zbl

[16] A. A. Ardentov, E. Le Donne, and Yu. L. Sachkov, “Sub-Finsler geodesics on the Cartan group”, Regul. Chaotic Dyn., 24:1 (2019), 36–60 | DOI | MR | Zbl

[17] A. A. Ardentov, E. Le Donne, and Yu. L. Sachkov, “A sub-Finsler problem on the Cartan group”, Optimal control and differential equations, Tr. Mat. Inst. Steklova, 304, Seklov Mathematical Institute, Moscow, 2019, 49–67 ; English transl. in Proc. Steklov Inst. Math., 304 (2019), 42–59 | DOI | MR | Zbl | DOI

[18] A. A. Ardentov and Yu. L. Sachkov, “Solution to Euler's elastic problem”, Avtomat. Tekemekh., 2009, no. 4, 78–88 ; English transl. in Autom. Remote Control, 70:4 (2009), 633–643 | MR | Zbl | DOI

[19] A. A. Ardentov and Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Mat. Sb., 202:11 (2011), 31–54 ; English transl. in Sb. Math., 202:11 (2011), 1593–1615 | DOI | MR | Zbl | DOI

[20] A. A. Ardentov and Yu. L. Sachkov, “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390 | DOI | MR | Zbl

[21] A. A. Ardentov and Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl

[22] A. A. Ardentov and Yu. L. Sachkov, “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl

[23] A. A. Ardentov and Yu. L. Sachkov, “Cut locus in the sub-Riemannian problem on Engel group”, Dokl. Ross. Akad. Nauk, 478:6 (2018), 623–626 ; English transl. in Dokl. Math., 97:1 (2018), 82–85 | DOI | MR | Zbl | DOI

[24] A. A. Ardentov and Yu. L. Sachkov, “Sub-Finsler problem on the Cartan group”, Dokl. Ross. Akad. Nauk, 484:2 (2019), 138–141 ; English transl. in Dokl. Math., 99:1 (2019), 20–22 | DOI | Zbl | DOI | MR

[25] A. A. Ardentov and Yu. L. Sachkov, “Sub-Finsler structures on the Engel group”, Dokl. Ros. Akad. Nauk, 485:4 (2019), 395–398 ; English transl. in Dokl. Math., 99:2 (2019), 171–174 | DOI | Zbl | DOI | MR

[26] A. A. Ardentov, Yu. L. Sachkov, T. Huang, and X. Yang, “Extremal trajectories in the sub-Lorentzian problem on the Engel group”, Mat. Sb., 209:11 (2018), 3–31 ; English transl. in Sb. Math., 209:11 (2018), 1547–1574 | DOI | MR | Zbl | DOI

[27] A. A. Ardentov and A. V. Smirnov, “Control of a mobile robot along Euler elasticae”, Program. Sistemy Teor. Prilozhen., 8:4 (2017), 163–178 (Russian) | DOI

[28] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, 2nd revised and augmented ed., Editorial URSS, 2002, 416 pp.; English transl. Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd rev. ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[29] A. M. Arthurs and G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534 | DOI | MR | Zbl

[30] D. Barilari, U. Boscain, E. Le Donne, and M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl

[31] A. Bellaïche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 1–78 | DOI | MR | Zbl

[32] A. Bellaïche, J.-P. Laumond, and M. Chyba, “Canonical nilpotent approximation of control systems: application to nonholonomic motion planning”, Proceedings of 32nd IEEE conference on decision and control (San Antonio, TX), v. 3, IEEE, 1993, 2694–2699 | DOI

[33] A. Bellaïche, J.-P. Laumond, and J.-J. Risler, “Nilpotent infinitesimal approximations to a control Lie algebra”, Nonlinear control systems design 1992, Selected papers from the 2nd IFAC symposium (Bordeaux 1992), IFAC Symposia Series, Pergamon Press, Oxford, 1993, 101–108 | DOI

[34] E. J. Bekkers, R. Duits, A. Mashtakov, and G. R. Sanguinetti, “A PDE approach to data-driven sub-Riemannian geodesics in $\mathrm{SE}(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770 | DOI | MR | Zbl

[35] E. J. Bekkers, R. Duits, A. Mashtakov, and Yu. Sachkov, “Vessel tracking via sub-Riemannian geodesics on the projective line bundle”, Geometric science of information, Lecture Notes in Comput. Sci., 10589, Springer, Cham, 2017, 773–781 | DOI | MR | Zbl

[36] G. Ben-Yosef and O. Ben-Shahar, “A tangent bundle theory for visual curve completion”, IEEE Trans. Pattern Anal. Mach. Intell., 34:7 (2012), 1263–1280 | DOI

[37] V. N. Berestovskii, “Homogeneous manifolds with intrinsic metric. II”, Sibirsk. Mat. Zh., 30:2 (1989), 14–28 ; English transl. in Siberian Math. J., 30:2 (1989), 180–191 | MR | Zbl | DOI

[38] V. N. Berestovskii, “Structure of homogeneous locally compact spaces with intrinsic metric”, Sibirsk. Mat. Zh., 30:1 (1989), 23–34 ; English transl. in Siberian Math. J., 30:1 (1989), 16–25 | MR | Zbl | DOI

[39] V. N. Berestovskii, “Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane”, Sibirsk. Mat. Zh., 35:6 (1994), 1223–1229 ; English transl. in Siberian Math. J., 35:6 (1994), 1083–1088 | MR | Zbl | DOI

[40] V. N. Berestovskii, “Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane”, Sibirsk. Mat. Zh., 35:1 (1994), 3–11 ; English transl. in Siberian Math. J., 35:1 (1994), 1–8 | MR | Zbl | DOI

[41] V. N. Berestovskii and I. A. Zubareva, “Extremals of a left-invariant sub-Finsler metric on the Engel group”, Sibirsk. Mat. Zh., 61:4 (2020), 735–751 ; English transl. in Siberian Math. J., 61:4 (2020), 575–588 | DOI | MR | Zbl | DOI

[42] V. N. Berestovskii and I. A. Zubareva, “PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups”, Chebyshevskii Sb., 21:2 (2020), 43–64 | DOI | MR | Zbl

[43] D. Bernoulli, “26th letter to L. Euler (October, 1742)”: P. H. Fuss, Correspondance mathématique et physique, v. 2, St. Petersburg, 1843, 499–507

[44] J. Bernoulli, “Véritable hypothèse de la résistance des solides, avec la demonstration de la corbure des corps qui font ressort”, Collected works, v. 2, Geneva, 1744

[45] I. Beschastnyi and A. Medvedev, “Left-invariant Sub-Riemannian Engel structures: abnormal geodesics and integrability”, SIAM J. Control Optim., 56:5 (2018), 3524–3537 | DOI | MR | Zbl

[46] I. Yu. Beschastnyi and Yu. L. Sachkov, “Geodesics in the sub-Riemannian problem on the group $\operatorname{SO}(3)$”, Mat. Sb., 207:7 (2016), 29–56 ; English transl, in Sb. Math., 207:7 (2016), 915–941 | DOI | MR | Zbl | DOI

[47] R. M. Bianchini and G. Stefani, “Graded approximations and controllability along a trajectory”, SIAM J. Control Optim., 28:4 (1990), 903–924 | DOI | MR | Zbl

[48] A. Bicchi, D. Prattichizzo, and S. Sastry, “Planning motions of rolling surfaces”, Proceedings of 1995 34th IEEE conference on decision and control (New Orleans, LA 1995), v. 3, IEEE, 1995, 2812–2817 | DOI

[49] K. E. Bisshopp and D. C. Drucker, “Large deflection of cantilever beams”, Quart. Appl. Math., 3 (1945), 272–275 | DOI | MR | Zbl

[50] I. A. Bizyaev, A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups”, Regul. Chaotic Dyn., 21:6 (2016), 759–774 | DOI | MR | Zbl

[51] M. Born, Stabilität der elastischen Linie in Ebene und Raum, Preisschrift und Dissertation, Dieterichsche Universitäts-Buchdruckerei Göttingen, Göttingen, 1906, 101 pp. | Zbl

[52] U. Boscain, Th. Chambrion, and G. Charlot, “Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy”, Discrete Contin. Dyn. Syst. Ser. B, 5:4 (2005), 957–990 | DOI | MR | Zbl

[53] U. Boscain, R. Duits, F. Rossi, and Yu. Sachkov, “Curve cuspless reconstruction via sub-Riemannian geometry”, ESAIM Control Optim. Calc. Var., 20:3 (2014), 748–770 | DOI | MR | Zbl

[54] U. Boscain, R. A. Chertovskih, J.-P. Gauthier, and A. O. Remizov, “Hypoelliptic diffusion and human vision: a semidiscrete new twist”, SIAM J. Imaging Sci., 7:2 (2014), 669–695 | DOI | MR | Zbl

[55] U. Boscain and F. Rossi, “Invariant Carnot–Caratheodory metrics on $S^3$, $\operatorname{SO}(3)$, $\operatorname{SL}(2)$ and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl

[56] R. W. Brockett and L. Dai, “Non-holonomic kinematics and the role of elliptic functions in constructive controllability”, Nonholonomic motion planning, Kluwer Int. Ser. Eng. Comput. Sci., 192, Kluwer Acad. Publ., Boston, MA, 1993, 1–21 | DOI | Zbl

[57] H. Busemann, “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69:4 (1947), 863–871 | DOI | MR | Zbl

[58] Y. A. Butt, Yu. L. Sachkov, and A. I. Bhatti, “Extremal trajectories and Maxwell strata in sub-Riemannian problem on group of motions of pseudo-Euclidean plane”, J. Dyn. Control Syst., 20:3 (2014), 341–364 | DOI | MR | Zbl

[59] Y. A. Butt, Yu. L. Sachkov, and A. I. Bhatti, “Maxwell strata and conjugate points in the sub-Riemannian problem on the Lie group $\operatorname{SH}(2)$”, J. Dyn. Control Syst., 22:4 (2016), 747–770 | DOI | MR | Zbl

[60] Y. A. Butt, Yu. L. Sachkov, and A. I. Bhatti, “Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group $\operatorname{SH}(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–195 | DOI | MR | Zbl

[61] Q. Cai, T. Huang, Yu. L. Sachkov, and X. Yang, “Geodesics in the Engel group with a sub-Lorentzian metric”, J. Dyn. Control Syst., 22:3 (2016), 465–484 | DOI | MR | Zbl

[62] E. Cartan, “Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 27 (1910), 109–192 | DOI | MR | Zbl

[63] Y. Chitour, F. Jean, and R. Long, “A global steering method for nonholonomic systems”, J. Differential Equations, 254:4 (2013), 1903–1956 | DOI | MR | Zbl

[64] G. Citti and A. Sarti, “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vision, 24:3 (2006), 307–326 | DOI | MR | Zbl

[65] L. van den Dries, A. Macintyre, and D. Marker, “The elementary theory of restricted analytic fields with exponentiation”, Ann. of Math. (2), 140:1 (1994), 183–205 | DOI | MR | Zbl

[66] R. Duits, U. Boscain, F. Rossi, and Y. L. Sachkov, “Association fields via cuspless sub-Riemannian geodesics in $\operatorname{SE}(2)$”, J. Math. Imaging Vision, 49:2 (2014), 384–417 | DOI | MR | Zbl

[67] R. Duits, M. Felsberg, G. Granlund, and B. H. Romeny, “Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group”, Int. J. Comput. Vis., 72:1 (2007), 79–102 | DOI

[68] R. Duits, A. Ghosh, T. C. J. Dela Haije, and A. Mashtakov, “On sub-Riemannian geodesics in $\operatorname{SE}(3)$ whose spatial projections do not have cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805 | DOI | MR | Zbl

[69] M. S. El Naschie, “Thermal initial post buckling of the extensional elastica”, Int. J. Mech. Sci., 18:6 (1976), 321–324 | DOI

[70] L. Euler, “De curvis elasticis”, Additamentum I, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti, M.-M. Bousquet, Lausanne–Geneva, 1744, 245–310; English transl. “Leonhard Euler's elastic curves”, Isis, 20:1 (1933), 72–160

[71] C. Fernandes, L. Gurvits, and Z. X. Li, “A variational approach to optimal nonholonomic motion planning”, Proceedings. 1991 IEEE international conference on robotics and automation (Sacramento, CA 1991), v. 1, IEEE, 1991, 680–685 | DOI

[72] B. Franceschiello, A. Mashtakov, G. Citti, and A. Sarti, “Modelling of the Poggendorff illusion via sub-Riemannian geodesics in the roto-translation group”, New trends in image analysis and processing–ICIAP 2017, Lecture Notes in Comput. Sci., 10590, Springer, Cham, 2017, 37–47 | DOI | MR

[73] B. Franceschiello, A. Mashtakov, G. Citti, and A. Sarti, “Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group”, Differential Geom. Appl., 65 (2019), 55–77 | DOI | MR | Zbl

[74] E. Franken and R. Duits, “Crossing-preserving coherence-enhancing diffusion on invertible orientation scores”, Int. J. Comput. Vis., 85:3 (2009), 253–278 | DOI

[75] R. Frisch-Fay, Flexible bars, Butterworths and Co., London, 1962, vii+220 pp. | Zbl

[76] N. J. Glassmaker and C. Y. Hui, “Elastica solution for a nanotube formed by self-adhesion of a folded thin film”, J. Appl. Phys., 96:6 (2004), 3429–3434 | DOI

[77] C. Golé and R. Karidi, “A note on Carnot geodesics in nilpotent Lie groups”, J. Dyn. Control Syst., 1:4 (1995), 535–549 | DOI | MR | Zbl

[78] A. G. Greenhill, The applications of elliptic functions, Macmillan, London–New York, 1892, xi+357 pp. | MR | Zbl

[79] P. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp. | DOI | MR | Zbl

[80] M. Grochowski, “Reachable sets for the Heisenberg sub-Lorentzian metric on $\mathbb{R}^3$. An estimate for the distance function”, J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR | Zbl

[81] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[82] E. Grong and A. Vasil'ev, “Sub-Riemannian and sub-Lorentzian geometry on $\operatorname{SU}(1,1)$ and on its universal cover”, J. Geom. Mech., 3:2 (2011), 225–260 | DOI | MR | Zbl

[83] J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142 | DOI | MR | Zbl

[84] G. H. M. van der Heijden, S. Neukirch, V. G. A. Goss, and J. M. T. Thompson, “Instability and self-contact phenomena in the writhing of clamped rods”, Int. J. Mech. Sci., 45 (2003), 161–196 | DOI | Zbl

[85] H. Hermes, “Nilpotent and high-order approximations of vector field systems”, SIAM Rev., 33:2 (1991), 238–264 | DOI | MR | Zbl

[86] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl

[87] V. Jurdjevic, “Non-Euclidean elastica”, Amer. J. Math., 117:1 (1995), 93–124 | DOI | MR | Zbl

[88] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997, xviii+492 pp. | DOI | MR | Zbl

[89] V. Jurdjevic, Optimal control and geometry: integrable systems, Cambridge Stud. Adv. Math., 154, Cambridge Univ. Press, Cambridge, 2016, xx+415 pp. | DOI | MR | Zbl

[90] P. V. Kharlamov, “A critique of some mathematical models of mechanical systems with differential constraints”, Prikl. Mat. Mech., 56:4 (1992), 683–692 ; English transl. in J. Appl. Math. Mech., 56:4 (1992), 584–594 | MR | Zbl | DOI

[91] A. Korolko and I. Markina, “Nonholonomic Lorentzian geometry on some $\mathbb H$-type groups”, J. Geom. Anal., 19:4 (2009), 864–889 | DOI | MR | Zbl

[92] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. I”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 1982, no. 3, 92–100 ; II, 1982, No 4, 70–76 ; III, 1983, No 3, 102–111 ; English transl. in I, Moscow Univ. Mech. Bull., 37:3-4 (1982), 27–34; II, 37:3-4 (1982), 74–80; III, 38:3 (1983), 40–51 | MR | Zbl | MR | Zbl | MR | Zbl

[93] V. V. Kozlov, “Realization of nonintegrable constraints in classical mechanics”, Dokl. Akad. Nauk SSSR, 272:3 (1983), 550–554 ; English transl. in Soviet Phys. Dokl., 28:9 (1983), 735–737 | MR | Zbl

[94] G. Lafferriere and H. J. Sussmann, “A differential geometric approach to motion planning”, Nonholonomic motion planning, Kluwer Int. Ser. Eng. Comput. Sci., 192, Kluwer Acad. Publ., Boston, MA, 1993, 235–270 | DOI | Zbl

[95] H. Lamb, Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge, 1932, xv+738 pp. | MR | Zbl

[96] T. J. Lardner, “A note on the elastica with large loads”, Internat. J. Solids Structures, 21:1 (1985), 21–26 | DOI | MR

[97] J. P. Laumond, Nonholonomic motion planning for mobile robots, Preprint no. 98211, LAAS-CNRS, Toulouse, 1998

[98] D. F. Lawden, Elliptic functions and applications, Appl. Math. Sci., 80, Springer-Verlag, New York, 1989, xiv+334 pp. | DOI | MR | Zbl

[99] R. Levien, The elastica: a mathematical history, Tech. rep. no. UCB/EECS-2008-103, Univ. of California, Berkeley, 2008, 25 pp. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.html

[100] Z. Li and J. Canny, “Motion of two rigid bodies with rolling constraint”, IEEE Trans. Robot. Automat., 6:1 (1990), 62–72 | DOI

[101] J.-M. Lion and J.-P. Rolin, “Théorème de préparation pur les fonctions logarithmico-exponentielles”, Ann. Inst. Fourier (Grenoble), 47:3 (1997), 859–884 | DOI | MR | Zbl

[102] L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Mat. Sb., 210:8 (2019), 120–148 ; English transl. in Sb. Math., 210:8 (2019), 1179–1205 | DOI | MR | Zbl | DOI

[103] L. V. Lokutsievskii and Yu. L. Sachkov, “Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4”, Dokl. Ross. Akad. Nauk, 474:1 (2017), 19–21 ; English transl. in Dokl. Math., 95:3 (2017), 211–213 | DOI | MR | Zbl | DOI

[104] L. V. Lokutsievskiy and Yu. L. Sachkov, “Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater”, Mat. Sb., 209:5 (2018), 74–119 ; English transl. in Sb. Math., 209:5 (2018), 672–713 | DOI | MR | Zbl | DOI

[105] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge Univ. Press, Cambridge, 1927, xviii+643 pp. | MR | Zbl

[106] R. S. Manning, J. H. Maddocks, and J. D. Kahn, “A continuum rod model of sequence-dependent DNA structure”, J. Chem. Phys., 105:13 (1996), 5626–5646 | DOI

[107] R. S. Manning, K. A. Rogers, and J. H. Maddocks, “Isoperimetric conjugate points with application to the stability of DNA minicircles”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454:1980 (1998), 3047–3074 | DOI | MR | Zbl

[108] A. Marigo and A. Bicchi, “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control (Boulder, CO 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 241–256 | DOI | MR | Zbl

[109] A. P. Mashtakov, “Algorithms and software for the solution of a constructive control problem using non-holonomic five-dimensional systems”, Program. Sistemy Teor. Prilozhen., 3:1 (2012), 3–29 (Russian)

[110] A. P. Mashtakov, A. A. Ardentov, and Yu. L. Sachkov, “Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations”, Numer. Math. Theory Methods Appl., 6:1 (2013), 95–115 | DOI | MR | Zbl

[111] A. Mashtakov, A. Ardentov, and Yu. L. Sachkov, “Relation between Euler's elasticae and sub-Riemannian geodesics on $\operatorname{SE}(2)$”, Regul. Chaotic Dyn., 21:7-8 (2016), 832–839 | DOI | MR | Zbl

[112] A. P. Mashtakov, R. Duits, Yu. L. Sachkov, E. Bekkers, and I. Yu. Beschastnyi, “Sub-Riemannian geodesics in $\operatorname{SO}(3)$ with application to vessel tracking in spherical images of retina”, Dokl. Ross. Akad. Nauk, 473:5 (2017), 521–524 ; English transl. in Dokl. Math., 95:2 (2017), 168–171 | DOI | MR | Zbl | DOI

[113] A. Mashtakov, R. Duits, Yu. Sachkov, E. J. Bekkers, and I. Beschastnyi, “Tracking of lines in spherical images via sub-Riemannian geodesics in $\operatorname{SO}(3)$”, J. Math. Imaging Vision, 58:2 (2017), 239–264 | DOI | MR | Zbl

[114] A. P. Mashtakov and Yu. L. Sachkov, “Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane”, Mat. Sb., 202:9 (2011), 97–120 ; English transl. in Sb. Math., 202:9 (2011), 1347–1371 | DOI | MR | Zbl | DOI

[115] Y. Mikata, “Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube”, Acta Mech., 190:4 (2007), 133–150 | DOI | Zbl

[116] I. Moiseev and Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl

[117] D. Mumford, “Elastica and computer vision”, Algebraic geometry and its applications (West Lafayette, IN 1990), Springer, New York, 1994, 491–506 | DOI | MR | Zbl

[118] R. M. Murray, “Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems”, Math. Control Signals Systems, 7:1 (1994), 58–75 ; CDS Tech. Rep. 92-002, Univ. of California, Berkeley, 1992, 19 pp. http://www.cds.caltech.edu/~murray/papers/1992i_mur92-cds.html | DOI | MR | Zbl

[119] D. E. Panayotounakos and P. S. Theocaris, “Analytic solutions for nonlinear differential equations describing the elastica of straight bars: theory”, J. Franklin Inst., 325:5 (1988), 621–633 | DOI | MR | Zbl

[120] J. Petitot, “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris, 97:2-3 (2003), 265–309 | DOI

[121] J. Petitot, Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Éditions de l'École Polytechnique, Palaiseau, 2008, 419 pp. | MR

[122] L. Saalschütz, Der belastete Stab unter Einwirkung einer seitlichen Kraft, B. G. Teubner, Leipzig, 1880, 280 pp. | Zbl

[123] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Mat. Sb., 194:9 (2003), 63–90 ; English transl. in Sb. Math., 194:9 (2003), 1331–1359 | DOI | MR | Zbl | DOI

[124] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl

[125] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Mat. Sb., 197:2 (2006), 95–116 ; English transl. in Sb. Math., 197:2 (2006), 235–257 | DOI | MR | Zbl | DOI

[126] Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Mat. Sb., 197:4 (2006), 123–150 ; English transl. in Sb. Math., 197:4 (2006), 595–621 | DOI | MR | Zbl | DOI

[127] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Mat. Sb., 197:6 (2006), 111–160 ; English transl. in Sb. Math., 197:6 (2006), 901–950 | DOI | MR | Zbl | DOI

[128] Yu. L. Sachkov, “Control theory on Lie groups”, Optimal control, Sovr. Mat. Fund. Napravl., 27, RUDN University, Moscow, 2008, 5–59 ; English transl. in J. Math. Sci. (N. Y.), 156:3 (2009), 381–439 | MR | Zbl | DOI

[129] Yu. L. Sachkov, “Optimality of Euler's elasticae”, Dokl. Ross. Akad. Nauk, 417:1 (2007), 23–25 ; English transl. in Dokl. Math., 76:3 (2007), 817–819 | MR | Zbl | DOI

[130] Yu. L. Sachkov, “Maxwell strata in Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl

[131] Yu. L. Sachkov, “Conjugate points in Euler elastic problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439 | DOI | MR | Zbl

[132] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Mat. Sb., 201:7 (2010), 99–120 ; English transl. in Sb. Math., 201:7 (2010), 1029–1051 | DOI | Zbl | DOI | MR

[133] Yu. L. Sachkov and S. V. Levyakov, “Stability of inflectional elasticae centered at vertices or inflection points”, Differential equations and topology. II, Tr. Mat. Inst. Steklova, 271, MAIK Nauka/Interperiodika, Moscow, 2010, 187–203 ; English transl. in Proc. Steklov Inst. Math., 271 (2010), 177–192 | MR | Zbl | DOI

[134] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl

[135] Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl

[136] Yu. L. Sachkov, “Closed Euler elasticae”, Differential equations and dynamical systems, Tr. mat. Inst. Steklova, 278, MAIK Nauka/Interperiodika, Moscow, 2012, 227–241 ; Proc. Steklov Inst. Math., 278 (2012), 218–232 | MR | Zbl | DOI

[137] Yu. L. Sachkov and E. F. Sachkova, “Exponential mapping in Euler's elastic problem”, J. Dyn. Control Syst., 20:4 (2014), 443–464 | DOI | MR | Zbl

[138] Yu. L. Sachkov, “Optimal bang-bang trajectories in sub-Finsler problem on the Cartan group”, Nelineinaya Dinamika, 14:4 (2018), 583–593 | DOI | MR | Zbl

[139] Yu. L. Sachkov, “Periodic controls in step 2 strictly convex sub-Finsler problems”, Regul. Chaotic Dyn., 25:1 (2020), 33–39 | DOI | MR | Zbl

[140] Yu. L. Sachkov, “Homogeneous sub-Riemannian geodesics on a group of motions of the plane”, Differ. Uravn., 57:11 (2021), 1568–1572 ; English transl. in Differ. Equ., 57:11 (2021), 1550–1554 | DOI | MR | Zbl | DOI

[141] Yu. L. Sachkov, “Conjugate time in the sub-Riemannian problem on the Cartan group”, J. Dyn. Control Syst., 27:4 (2021), СЏ709–751 | DOI | MR | Zbl

[142] Yu. L. Sachkov, Introduction to geometric control, URSS, Moscow, 2021, 160 pp.; augmented English transl. Springer Optim. Appl., 192, Springer, Cham, 2022, xvii+162 pp. | DOI | MR | Zbl

[143] Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions”, Uspekhi Mat. Nauk, 77:1(463) (2022), 109–176 ; English transl. in Russian Math. Surveys, 77:1 (2022), 99–163 | DOI | MR | Zbl | DOI

[144] Yu. L. Sachkov, “Sub-Riemannian Cartan sphere”, Dokl. Ross. Akad. Nauk Mat. Informat. Prots. Upravl., 507 (2022), 66–70 (Russian) | DOI

[145] Yu. L. Sachkov, “Sub-Riemannian Siegel sphere”, Dokl. Ross. Akad. Nauk Mat. Informat. Prots. Upravl., 500 (2021), 97–101 ; English transl. in Dokl. Math., 104:2 (2021), 301–305 | DOI | Zbl | DOI | MR

[146] Yu. L. Sachkov and E. F. Sachkova, “Degenerate abnormal trajectories in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$”, Differ. Uravn., 53:3 (2017), 362–374 ; English transl. in Differ. Equ., 53:3 (2017), 352–365 | DOI | Zbl | DOI | MR

[147] Yu. L. Sachkov and E. F. Sachkova, “Sub-Lorentzian problem on the Heisenberg group”, Mat. Zametki, 113:1 (2023), 154–157 ; English transl. in Math. Notes, 113:1 (2023), 160–163 | DOI | DOI

[148] P. Seide, “Large deflections of a simply supported beam subjected to moment at one end”, J. Appl. Mech., 51:3 (1984), 519–525 | DOI

[149] I. H. Stampouloglou, E. E. Theotokoglou, and P. N. Andriotaki, “Asymptotic solutions to the non-linear cantilever elastica”, Internat. J. Non-Linear Mech., 40:10 (2005), 1252–1262 | DOI | MR | Zbl

[150] G. Stefani, “Polynomial approximations to control systems and local controllability”, 1985 24th IEEE conference on decision and control (Fort Lauderdale, FL 1985), IEEE, 1985, 33–38 | DOI

[151] T. Tang and N. J. Glassmaker, “On the inextensible elastica model for the collapse of nanotubes”, Math. Mech. Solids, 15:5 (2010), 591–606 | DOI | Zbl

[152] D. Tilbury, R. M. Murray, and S. S. Sastry, “Trajectory generation for the $N$-trailer problem using Goursat normal form”, IEEE Trans. Automat. Control, 40:5 (1995), 802–819 | DOI | MR | Zbl

[153] S. P. Timoshenko, History of strength of materials, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953, x+452 pp. | MR | Zbl

[154] C. Truesdell, “The influence of elasticity on analysis: the classic heritage”, Bull. Amer. Math. Soc. (N. S.), 9:3 (1983), 293–310 | DOI | MR | Zbl

[155] M. Vendittelli, G. Oriolo, and J.-P. Laumond, “Steering nonholonomic systems via nilpotent approximations: the general two-trailer system”, Proceedings 1999 IEEE international conference on robotics and automation (Detroit, MI 1999), v. 1, IEEE, 1999, 823–829 | DOI

[156] M. Venditelli, G. Oriolo, F. Jean, and J.-P. Laumond, “Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities”, IEEE Trans. Automat. Control, 49:2 (2004), 261–266 | DOI | MR | Zbl

[157] A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems, 3, Sovr. Probl. mat. Fund. Napavl., 16, VINITI, Moscow, 1987, 5–85 ; English transl. in Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81 | MR | Zbl | DOI | MR

[158] A. M. Vershik and O. A. Granichina, “Reduction of nonholonomic variation problems to isoperimetric ones and connections in principal bundles”, Mat. Zametki, 49:5 (1991), 37–44 ; English transl. in Math. Notes, 49:5 (1991), 467–472 | MR | Zbl | DOI

[159] N. Ja. Vilenkin, Special functions and the theory of group representations, Nauka, Moscow, 1965, 588 pp. ; English transl. Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968, x+613 pp. | MR | Zbl | MR | Zbl

[160] G. C. Walsh, R. Montgomery, and S. S. Sastry, “Optimal path planning on matrix Lie groups”, Proceedings of 1994 33rd IEEE conference on decision and control (Lake Buena Vista, FL 1994), v. 2, IEEE, 1994, 1258–1263 | DOI

[161] C. Y. Wang, “Post-buckling of a clamped-simply supported elastica”, Internat. J. Non-Linear Mech., 32:6 (1997), 1115–1122 | DOI | Zbl

[162] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl