Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 1-64
Voir la notice de l'article provenant de la source Math-Net.Ru
In this survey we discuss holomorphic $\mathbb{P}^1$-bundles $p\colon X \to Y$ over a non-uniruled complex compact Kähler manifold $Y$, paying a special attention to the case when $Y$ is a complex torus. We consider the groups $\operatorname{Aut}(X)$ and $\operatorname{Bim}(X)$ of its biholomorphic and bimeromorphic automorphisms, respectively, and discuss when these groups are bounded, Jordan, strongly Jordan, or very Jordan.
Bibliography: 88 titles.
Keywords:
automorphism groups of compact complex manifolds, complex tori, conic bundles, Jordan properties of groups.
Mots-clés : algebraic dimension 0
Mots-clés : algebraic dimension 0
@article{RM_2023_78_1_a0,
author = {T. Bandman and Yu. G. Zarhin},
title = {Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--64},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/}
}
TY - JOUR
AU - T. Bandman
AU - Yu. G. Zarhin
TI - Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2023
SP - 1
EP - 64
VL - 78
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/
LA - en
ID - RM_2023_78_1_a0
ER -
T. Bandman; Yu. G. Zarhin. Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 1-64. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/