Mots-clés : algebraic dimension 0
@article{RM_2023_78_1_a0,
author = {T. Bandman and Yu. G. Zarhin},
title = {Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--64},
year = {2023},
volume = {78},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/}
}
TY - JOUR
AU - T. Bandman
AU - Yu. G. Zarhin
TI - Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2023
SP - 1
EP - 64
VL - 78
IS - 1
UR - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/
LA - en
ID - RM_2023_78_1_a0
ER -
T. Bandman; Yu. G. Zarhin. Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 1-64. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/
[1] D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg Sohn, Braunschweig, 1995, viii+201 pp. | DOI | MR | Zbl
[2] A. Andreotti and W. Stoll, “Extension of holomorphic maps”, Ann. of Math. (2), 72:2 (1960), 312–349 | DOI | MR | Zbl
[3] A. Andreotti and W. Stoll, Analytic and algebraic dependence of meromorphic functions, Lecture Notes in Math., 234, Springer-Verlag, Berlin–New York, 1971, iii+390 pp. | DOI | MR | Zbl
[4] T. Bandman and Yu. G. Zarhin, “Jordan groups and algebraic surfaces”, Transform. Groups, 20:2 (2015), 327–334 | DOI | MR | Zbl
[5] T. Bandman and Yu. G. Zarhin, “Jordan groups, conic bundles and abelian varieties”, Algebr. Geom., 4:2 (2017), 229–246 | DOI | MR | Zbl
[6] T. Bandman and Yu. G. Zarhin, “Jordan properties of automorphism groups of certain open algebraic varieties”, Transform. Groups, 24:3 (2019), 721–739 | DOI | MR | Zbl
[7] T. Bandman and Yu. G. Zarhin, “Bimeromorphic automorphism groups of certain $\mathbb{P}^1$-bundles”, Eur. J. Math., 7:2 (2021), 641–670 | DOI | MR | Zbl
[8] T. Bandman and Yu. G. Zarhin, “Simple complex tori of algebraic dimension 0”, Tr. Mat. Inst. Steklova, 320 (2023), 27–45 ; English transl. in Proc. Steklov Inst. Math., 320 (2023), 21–38 | DOI
[9] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | DOI | MR | Zbl
[10] C. Birkar, “Singularities of linear systems and boundedness of Fano varieties”, Ann. of Math. (2), 193:2 (2021), 347–405 | DOI | MR | Zbl
[11] C. Birkenhake and H. Lange, Complex tori, Progr. Math., 177, Birkhäuser Boston, Inc., Boston, MA, 1999, xvi+251 pp. | DOI | MR | Zbl
[12] C. Birkenhake and H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, 2nd ed., Springer-Verlag, Berlin, 2004, xii+635 pp. | DOI | MR | Zbl
[13] S. Bochner and D. Montgomery, “Groups on analytic manifolds”, Ann. of Math. (2), 48:3 (1947), 659–669 | DOI | MR | Zbl
[14] R. Brauer and W. Feit, “An analogue of Jordan's theorem in characteristic $p$”, Ann. of Math. (2), 84:2 (1966), 119–131 | DOI | MR | Zbl
[15] F. Campana, “Connexité rationnelle des variétés de Fano”, Ann. Sci. École Norm. Sup. (4), 25:5 (1992), 539–545 | DOI | MR | Zbl
[16] F. Campana and Th. Peternell, “Cycle spaces”, Several complex variables VII. Sheaf-theoretical methods in complex analysis, Encyclopaedia Math. Sci., 74, Springer-Verlag, Berlin, 1994, 319–349 | DOI | MR | Zbl
[17] Y. Chen and C. Shramov, Automorphisms of surfaces over fields of positive characteristic, 2022 (v1 – 2021), 46 pp., arXiv: 2106.15906
[18] M. J. Collins, “On Jordan's theorem for complex linear groups”, J. Group Theory, 10:4 (2007), 411–423 | DOI | MR | Zbl
[19] B. Csikós, L. Pyber, and E. Szabó, Diffeomorphism groups of compact 4-manifolds are not always Jordan, 2014, 4 pp., arXiv: 1411.7524
[20] G. Dethloff and H. Grauert, “Seminormal complex spaces”, Several complex variables VII. Sheaf-theoretical methods in complex analysis, Encyclopaedia Math. Sci., 74, Springer-Verlag, Berlin, 1994, 183–220 | DOI | MR | Zbl
[21] G. Fischer, Complex analytic geometry, Lecture Notes in Math., 538, Springer-Verlag, Berlin–New York, 1976, vii+201 pp. | DOI | MR | Zbl
[22] W. Fischer and H. Grauert, “Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1965 (1965), 89–94 | MR | Zbl
[23] A. Fujiki, “On automorphism groups of compact Kähler manifolds”, Invent. Math., 44:3 (1978), 225–258 | DOI | MR | Zbl
[24] A. Fujiki, “On the minimal models of complex manifolds”, Math. Ann., 253:2 (1980), 111–128 | DOI | MR | Zbl
[25] A. Fujiki, “Deformation of uniruled manifolds”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 687–702 | DOI | MR | Zbl
[26] A. S. Golota, “Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds”, Mat. Sb., 214:1 (2023), 31–42 ; English transl. in Sb. Math., 214:1 (2023) | DOI | DOI
[27] P. Graf and M. Schwald, “On the Kodaira problem for uniruled Kähler spaces”, Ark. Mat., 58:2 (2020), 267–284 | DOI | MR | Zbl
[28] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, xiv+317 pp. | MR | Zbl
[29] A. Höring and Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264 | DOI | MR | Zbl
[30] F. Hu, “Jordan property for algebraic groups and automorphism groups of projective varieties in arbitrary characteristic”, Indiana Univ. Math. J., 69:7 (2020), 2493–2504 | DOI | MR | Zbl
[31] D. Huybrechts, Complex geometry. An introduction, Universitext, Springer-Verlag, Berlin, 2005, xii+309 pp. | DOI | MR | Zbl
[32] C. Jordan, “Mémoire sur les équations différentielles linéaires à intégrale algébrique”, J. Reine Angew. Math., 1877:84 (1877), 89–215 ; ØE uvres, v. II, Gauthier-Villars, Paris, 1961, 13–140 | Zbl | Zbl
[33] G. R. Kempf, Complex abelian varieties and theta functions, Universitext, Springer-Verlag, Berlin, 1991, x+105 pp. | DOI | MR | Zbl
[34] J. H. Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp. | DOI | MR | Zbl
[35] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp. | DOI | MR | Zbl
[36] A. Kuznetsova, “Automorphisms of quasi-projective surfaces over fields of finite characteristic”, J. Algebra, 595 (2022), 271–278 | DOI | MR | Zbl
[37] S. Lang, Algebra, Grad. Texts in Math., 211, 3rd ed., Springer-Verlag, New York, 2002, xvi+914 pp. | MR | Zbl
[38] M. J. Larsen and R. Pink, “Finite subgroups of algebraic groups”, J. Amer. Math. Soc., 24:4 (2011), 1105–1158 | DOI | MR | Zbl
[39] E. E. Levi, “Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse”, Ann. Mat. Pura Appl. (3), 17 (1910), 61–87 | DOI | Zbl
[40] D. I. Lieberman, “Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds”, Fonctions de plusieurs variables complexes. III, Sém. François Norguet, 1975–1977, Lecture Notes in Math., 670, Springer, Berlin, 1978, 140–186 | MR | Zbl
[41] T. Mabuchi, “Invariant $\beta$ and uniruled threefolds”, J. Math. Kyoto Univ., 22:3 (1982/83), 503–554 | DOI | MR | Zbl
[42] L. N. Mann and J. C. Su, “Actions of elementary $p$-groups on manifolds”, Trans. Amer. Math. Soc., 106 (1963), 115–126 | DOI | MR | Zbl
[43] S. Meng, F. Perroni, and D.-Q. Zhang, “Jordan property for automorphism groups of compact spaces in Fujiki's class $\mathscr{C}$”, J. Topol., 15:2 (2022), 806–814 | DOI | MR
[44] S. Meng and D.-Q. Zhang, “Jordan property for non-linear algebraic groups and projective varieties”, Amer. J. Math., 140:4 (2018), 1133–1145 | DOI | MR | Zbl
[45] Y. Miyaoka, “On the Kodaira dimension of minimal threefolds”, Math. Ann., 281:2 (1988), 325–332 | DOI | MR | Zbl
[46] D. Mumford, “On the equations defining abelian varieties. I”, Invent. Math., 1 (1966), 287–354 | DOI | MR | Zbl
[47] I. Mundet i Riera, “Jordan's theorem for the diffeomorphism group of some manifolds”, Proc. Amer. Math. Soc., 138:6 (2010), 2253–2262 | DOI | MR | Zbl
[48] I. Mundet i Riera, Finite group actions on manifolds without odd cohomology, 2014 (v1 – 2013), 34 pp., arXiv: 1310.6565
[49] I. Mundet i Riera, “Finite group actions on 4-manifolds with nonzero Euler characteristic”, Math. Z., 282:1-2 (2016), 25–42 | DOI | MR | Zbl
[50] I. Mundet i Riera, “Finite groups acting symplectically on $T^2\times S^2$”, Trans. Amer. Math. Soc., 369:6 (2017), 4457–4483 | DOI | MR | Zbl
[51] I. Mundet i Riera, “Non Jordan groups of diffeomorphisms and actions of compact Lie groups on manifolds”, Transform. Groups, 22:2 (2017), 487–501 | DOI | MR | Zbl
[52] I. Mundet i Riera, “Finite group actions on homology spheres and manifolds with nonzero Euler characteristic”, J. Topol., 12:3 (2019), 744–758 | DOI | MR | Zbl
[53] I. Mundet i Riera and A. Turull, “Boosting an analogue of Jordan's theorem for finite groups”, Adv. Math., 272 (2015), 820–836 | DOI | MR | Zbl
[54] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., 25, Springer-Verlag, Berlin–New York, 1966, iii+143 pp. | DOI | MR | Zbl
[55] A. L. Onishchik and È. B. Vinberg, “Foundations of Lie theory”, Lie groups and Lie algebras I, Sovr. Probl. Mat. Fund. Napravl., 20, VINITI, Moscow, 1988, 5–101 ; English transl. in Lie groups and Lie algebras I, Encyclopaedia Math. Sci., 20, Springer-Verlag, Berlin, 1993, 1–94 | MR | Zbl | MR | Zbl
[56] Th. Peternell, “Modifications”, Several complex variables VII. Sheaf-theoretical methods in complex analysis, Encyclopaedia Math. Sci., 74, Springer-Verlag, Berlin, 1994, 285–317 | DOI | MR | Zbl
[57] Th. Peternell and P. Remmert, “Differential calculus, holomorphic maps and linear structures on complex spaces”, Several complex variables VII. Sheaf-theoretical methods in complex analysis, Encyclopaedia Math. Sci., 74, Springer-Verlag, Berlin, 1994, 97–144 | DOI | MR | Zbl
[58] V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | DOI | MR | Zbl
[59] V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 185–213 | DOI | MR | Zbl
[60] V. L. Popov, “Finite subgroups of diffeomorphism groups”, Selected tolics in mathematics and mechanics, Tr. Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, РЉ., 2015, 235–241 ; English transl in Proc. Steklov Inst. Math., 289 (2015), 221–226 | DOI | MR | Zbl | DOI
[61] V. L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819 | DOI | MR | Zbl
[62] Yu. Prokhorov and C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072 | DOI | MR | Zbl
[63] Yu. Prokhorov and C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418 | DOI | MR | Zbl
[64] Yu. Prokhorov and C. Shramov, “Jordan constant for Cremona group of rank 3”, Mosc. Math. J., 17:3 (2017), 457–509 | DOI | MR | Zbl
[65] Yu. Prokhorov and C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972 | DOI | MR | Zbl
[66] Yu. G. Prokhorov and C. A. Shramov, “Automorphism groups of Moishezon threefolds”, Mat. Zametki, 106:4 (2019), 636–640 ; English transl. in Math. Notes, 106:4 (2019), 651–655 | DOI | MR | Zbl | DOI
[67] Yu. G. Prokhorov and C. A. Shramov, “Bounded automorphism groups of compact complex surfaces”, Mat. Sb., 211:9 (2020), 105–118 ; English transl. in Sb. Math., 211:9 (2020), 1310–1322 | DOI | MR | Zbl | DOI
[68] Yu. G. Prokhorov and C. A. Shramov, “Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds”, Izv. Ross. Akad. Nauk Ser. Mat., 84:5 (2020), 169–196 ; English transl in Izv. Math., 84:5 (2020), 978–1001 | DOI | MR | Zbl | DOI
[69] Yu. Prokhorov and C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, 2021:14 (2021), 10490–10520 | DOI | MR | Zbl
[70] Yu. G. Prokhorov and C. A. Shramov, “Finite groups of bimeromorphic selfmaps of non-uniruled Kähler threefolds”, Mat. Sb., 213:12 (2022), 86–108 ; English transl. in Sb. Math., 213:12 (2022), 1695–1714 | DOI | DOI
[71] Yu. Prokhorov and C. Shramov, “Jordan property for Cremona group over a finite field”, Tr. Mat. Inst. Steklova, 320 (2023), 298–310 ; English transl. in Proc. Steklov Inst. Math., 320 (2023), 278–289 | DOI
[72] C. P. Ramanujam, “On a certain purity theorem”, J. Indian Math. Soc. (N. S.), 34 (1971), 1–9 | MR | Zbl
[73] R. Remmert, “Holomorphe und meromorphe Abbildungen komplexer Räume”, Math. Ann., 133 (1957), 328–370 | DOI | MR | Zbl
[74] J.-P. Serre, “Géométrie algébrique et géométrie analytique”, Ann. Inst. Fourier (Grenoble), 6 (1955/56), 1–42 | DOI | MR | Zbl
[75] J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450 | MR | Zbl
[76] J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198 | DOI | MR | Zbl
[77] J.-P. Serre, Finite groups. An introduction, 2nd ed., International Press, Sommerville, MA; Higher Education Press, Beijing, 2022, 192 pp. | MR | Zbl
[78] C. Shramov, “Fiberwise bimeromorphic maps of conic bundles”, Internat. J. Math., 30:11 (2019), 1950059, 12 pp. | DOI | MR | Zbl
[79] C. Shramov and V. Vologodsky, Automorphisms of pointless surfaces, 2020 (v1 – 2018), 46 pp., arXiv: 1807.06477
[80] C. Shramov and V. Vologodsky, “Boundedness for finite subgroups of linear algebraic groups”, Trans. Amer. Math. Soc., 374:12 (2021), 9029–9046 | DOI | MR | Zbl
[81] Y.-T. Siu, “Extension of meromorphic maps into Kähler manifolds”, Ann. of Math. (2), 102:3 (1975), 421–462 | DOI | MR | Zbl
[82] C. Voisin, Hodge theory and complex algebraic geometry, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002, x+322 pp. | DOI | MR | Zbl
[83] J. Winkelmann, “Realizing countable groups as automorphism groups of Riemann surfaces”, Doc. Math., 6 (2001), 413–417 | MR | Zbl
[84] E. Yasinsky, “The Jordan constant for Cremona group of rank 2”, Bull. Korean Math. Soc., 54:5 (2017), 1859–1871 | DOI | MR | Zbl
[85] Yu. G. Zarhin, “Theta groups and products of abelian and rational varieties”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 299–304 | DOI | MR | Zbl
[86] Yu. G. Zarhin, “Jordan groups and elliptic ruled surfaces”, Transform. Groups, 20:2 (2015), 557–572 | DOI | MR | Zbl
[87] Yu. G. Zarhin, “Complex tori, theta groups and their Jordan properties”, Algebra, number theory, and algebraic geometry, Tr. Mat. Inst. Steklova, 307, Steklov Mathematical Institute, Moscow, 2019, 32–62 ; English transl. in Proc. Steklov Inst. Math., 307 (2019), 22–50 | DOI | MR | Zbl | DOI
[88] B. P. Zimmermann, “On Jordan type bounds for finite groups acting on compact 3-manifolds”, Arch. Math. (Basel), 103:2 (2014), 195–200 | DOI | MR | Zbl