Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 1-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey we discuss holomorphic $\mathbb{P}^1$-bundles $p\colon X \to Y$ over a non-uniruled complex compact Kähler manifold $Y$, paying a special attention to the case when $Y$ is a complex torus. We consider the groups $\operatorname{Aut}(X)$ and $\operatorname{Bim}(X)$ of its biholomorphic and bimeromorphic automorphisms, respectively, and discuss when these groups are bounded, Jordan, strongly Jordan, or very Jordan. Bibliography: 88 titles.
Keywords: automorphism groups of compact complex manifolds, complex tori, conic bundles, Jordan properties of groups.
Mots-clés : algebraic dimension 0
@article{RM_2023_78_1_a0,
     author = {T. Bandman and Yu. G. Zarhin},
     title = {Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--64},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/}
}
TY  - JOUR
AU  - T. Bandman
AU  - Yu. G. Zarhin
TI  - Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 1
EP  - 64
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/
LA  - en
ID  - RM_2023_78_1_a0
ER  - 
%0 Journal Article
%A T. Bandman
%A Yu. G. Zarhin
%T Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 1-64
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/
%G en
%F RM_2023_78_1_a0
T. Bandman; Yu. G. Zarhin. Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 1, pp. 1-64. http://geodesic.mathdoc.fr/item/RM_2023_78_1_a0/