@article{RM_2022_77_6_a9,
author = {A. V. Bolsinov and V. M. Buchstaber and A. P. Veselov and P. G. Grinevich and I. A. Dynnikov and V. V. Kozlov and Yu. A. Kordyukov and D. V. Millionshchikov and A. E. Mironov and R. G. Novikov and S. P. Novikov and A. A. Yakovlev},
title = {Iskander {Asanovich} {Taimanov} (on his 60th birthday)},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1159--1168},
year = {2022},
volume = {77},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a9/}
}
TY - JOUR AU - A. V. Bolsinov AU - V. M. Buchstaber AU - A. P. Veselov AU - P. G. Grinevich AU - I. A. Dynnikov AU - V. V. Kozlov AU - Yu. A. Kordyukov AU - D. V. Millionshchikov AU - A. E. Mironov AU - R. G. Novikov AU - S. P. Novikov AU - A. A. Yakovlev TI - Iskander Asanovich Taimanov (on his 60th birthday) JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 1159 EP - 1168 VL - 77 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a9/ LA - en ID - RM_2022_77_6_a9 ER -
%0 Journal Article %A A. V. Bolsinov %A V. M. Buchstaber %A A. P. Veselov %A P. G. Grinevich %A I. A. Dynnikov %A V. V. Kozlov %A Yu. A. Kordyukov %A D. V. Millionshchikov %A A. E. Mironov %A R. G. Novikov %A S. P. Novikov %A A. A. Yakovlev %T Iskander Asanovich Taimanov (on his 60th birthday) %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 1159-1168 %V 77 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a9/ %G en %F RM_2022_77_6_a9
A. V. Bolsinov; V. M. Buchstaber; A. P. Veselov; P. G. Grinevich; I. A. Dynnikov; V. V. Kozlov; Yu. A. Kordyukov; D. V. Millionshchikov; A. E. Mironov; R. G. Novikov; S. P. Novikov; A. A. Yakovlev. Iskander Asanovich Taimanov (on his 60th birthday). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1159-1168. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a9/
[1] I. A. Taĭmanov, “The principle of throwing out cycles in Morse–Novikov theory”, Dokl. Akad. Nauk SSSR, 268:1 (1983), 46–50 ; English transl. in Soviet Math. Dokl., 27:1 (1983), 43–46 | MR | Zbl
[2] I. A. Taimanov, “Closed geodesics on non-simply-connected manifolds”, Usekhi Mat. Nauk, 40:6(246) (1985), 157–158 ; English transl in Russian Math. Surveys, 40:6 (1985), 143–144 | MR | Zbl | DOI
[3] I. A. Taĭmanov, “On an analogue of Novikov's conjecture in a problem of Riemann–Schottky type for Prym varieties”, Dokl. Akad. Nauk SSSR, 293:5 (1987), 1065–1068 ; English transl. in Soviet Math. Dokl., 35:2 (1987), 420–424 | MR | Zbl
[4] I. A. Taĭmanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 429–435 ; English transl. in Izv. Math., 30:2 (1988), 403–409 | MR | Zbl | DOI
[5] I. A. Taĭmanov, “Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals”, Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991), 367–383 ; English transl. in Izv. Math., 38:2 (1992), 359–374 | MR | Zbl | DOI
[6] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Uspekhi Mat. Nauk, 47:2(284) (1992), 143–185 ; English transl. in Russian Math. Surveys, 47:2 (1992), 163–211 | MR | Zbl | DOI
[7] I. A. Taĭmanov, “On the existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere”, Izv. Ross. Akad. Nauk Ser. Mat., 56:3 (1992), 605–635 ; English transl. in Izv. Math., 40:3 (1993), 565–590 | MR | Zbl | DOI
[8] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 133–151 | DOI | MR | Zbl
[9] I. A. Taimanov, “The Weierstrass representation of closed surfaces in $\mathbb R^3$”, Funksional. Anal. i Prilozhen., 32:4 (1998), 49–62 ; English transl. in Funct. Anal. Appl., 32:4 (1998), 258–267 | DOI | MR | Zbl | DOI
[10] I. K. Babenko and I. A. Taimanov, “On the existence of informal simply connected symplectic manifolds”, Uspeki Mat. Nauk, 53:5(323) (1998), 225–226 ; English transl in Russian Math. Surveys, 53:5 (1998), 1082–1083 | DOI | MR | Zbl | DOI
[11] A. Bahri and I. A. Taimanov, “Periodic orbits in magnetic fields and Ricci curvature of Lagrangian systems”, Trans. Amer. Math. Soc., 350:7 (1998), 2697–2717 | DOI | MR | Zbl
[12] I. K. Babenko and I. A. Taimanov, “Massey products in symplectic manifolds”, Mat. Sb., 191:8 (2000), 3–44 ; English transl. in Sb. Math., 191:8 (2000), 1107–1146 | DOI | MR | Zbl | DOI
[13] A. V. Bolsinov and I. A. Taimanov, “Integrable geodesic flows with positive topological entropy”, Invent. Math., 140:3 (2000), 639–650 | DOI | MR | Zbl
[14] I. A. Taimanov, Lectures on differential geometry, Institute for Computer Studies, Izhevsk, 2002, 176 pp. ; English transl. of 2nd ed. EMS Ser. Lectures in Math., Eur. Math. Soc. (EMS), Zürich, 2008, viii+211 pp. | MR | Zbl | DOI | MR | Zbl
[15] A. Knauf and I. A. Taimanov, “On the integrability of the $n$-centre problem”, Math. Ann., 331:3 (2005), 631–649 | DOI | MR | Zbl
[16] S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, Moscow Center for Continuous Mathematical Education, Moscow, 2005, 584 pp.; English transl. Grad. Stud. Math., 71, Amer. Math. Soc., Providence, RI, 2006, xx+633 pp. | DOI | MR | Zbl
[17] I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Uspekhi Mat. Nauk, 61:1(367) (2006), 85–164 ; English transl. in Russian Math. Surveys, 61:1 (2006), 79–159 | DOI | MR | Zbl | DOI
[18] A. E. Mironov and I. A. Taimanov, “Orthogonal curvilinear coordinate systems corresponding to singular spectral curves”, Finction spaces, approximation theory, nonlnear analysis, Tr. Mat. Inst. Steklova, 255, Nauka, MAIK Nauka/Interperiodika, Moscow, 2006, 180–196 ; English transl. in Proc. Steklov Inst. Math., 255 (2006), 169–184 | MR | Zbl | DOI
[19] A. E. Mironov and I. A. Taimanov, “On some algebraic examples of Frobenius manifolds”, Teoret. Mat. Fiz., 151:2 (2007), 195–206 ; English transl, in Theoret. and Math. Phys., 151:2 (2007), 604–613 | DOI | MR | Zbl | DOI
[20] P. G. Grinevich and I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Adv. Math. Sci., 61, Amer. Math. Soc., Providence, RI, 2008, 125–138 | DOI | MR | Zbl
[21] I. A. Taimanov and S. P. Tsarev, “Two-dimensional rational solitons and their blow-up via the Moutard transformation”, Teoret. Mat. Fiz., 157:2 (2008), 188–207 ; English transl. in Theoret. and Math. Phys., 157:2 (2008), 1525–1541 | DOI | MR | Zbl | DOI
[22] Ya. V. Bazaikin, V. A. Baikov, I. A. Taimanov, and A. A. Yakovlev, “Numerical analysis of topological characteristics of three-dimensional geological models of oil and gas reservoirs”, Mat. Modelirovanie, 25:10 (2013), 19–31 (Russian) | Zbl
[23] A. Abbondandolo, L. Asselle, G. Benedetti, M. Mazzucchelli, and I. A. Taimanov, “The multiplicity problem for periodic orbits of magnetic flows on the $2$-sphere”, Adv. Nonlinear Stud., 17:1 (2017), 17–30 | DOI | MR | Zbl
[24] V. A. Baikov, R. R. Gilmanov, I. A. Taimanov, and A. A. Yakovlev, “Topological characteristics of oil and gas reservoirs and their applications”, Towards integrative machine learning and knowledge extraction, Lecture Notes in Comput. Sci., 10344, Springer, Cham, 2017, 182–193 | DOI
[25] R. R. Gilmanov, A. V. Kalyuzhnyuk, I. A. Taimanov, and A. A. Yakovlev, “Topological characteristics of digital models of geological core”, Machine learning and knowledge extraction, Lecture Notes in Comput. Sci., 11015, Springer, Cham, 2018, 273–281 | DOI
[26] Yu. A. Kordyukov and I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Uspekhi Mat. Nauk, 74:2(446) (2019), 149–186 ; English transl. in Russian Math. Surveys, 74:2 (2019), 325–361 | DOI | MR | Zbl | DOI
[27] Yu. A. Kordyukov and I. A. Taimanov, “Quasi-classical approximation for magnetic monopoles”, Uspekhi Mat. Nauk, 75:6(456) (2020), 85–106 ; English transl. in Russian Math. Surveys, 75:6 (2020), 1067–1088 | DOI | MR | Zbl | DOI
[28] I. A. Taimanov, “The Moutard transformation for the Davey–Stewartson II equation and its geometrical meaning”, Mat. Zametki, 110:5 (2021), 751–765 ; English transl. in Math. Notes, 110:5 (2021), 754–766 | DOI | MR | Zbl | DOI
[29] M. V. Andreeva, A. V. Kalyuzhnyuk, V. V. Krutko, N. E. Russkikh, and I. A. Taimanov, “Representative elementary volume via averaged scalar Minkowski functionals”, Advanced problem in mechanics II (St. Petersburg 2020), Lect. Notes Mech. Eng., Springer, Cham, 2022, 533–539 | DOI | MR
[30] Yu. A. Kordyukov and I. A. Taimanov, “Trace formula for the magnetic Laplacian on a compact hyperbolic surface”, Regul. Chaotic Dyn., 27:4 (2022), 460–476 | DOI | MR | Zbl
[31] H.-B. Rademacher and I. A. Taimanov, “Closed geodesics on connected sums and 3-manifolds”, J. Differential Geom., 120:3 (2022), 557–573 | DOI | MR | Zbl