Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1152-1154

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2022_77_6_a7,
     author = {A. D. Baranov and I. R. Kayumov},
     title = {Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1152--1154},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/}
}
TY  - JOUR
AU  - A. D. Baranov
AU  - I. R. Kayumov
TI  - Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 1152
EP  - 1154
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/
LA  - en
ID  - RM_2022_77_6_a7
ER  - 
%0 Journal Article
%A A. D. Baranov
%A I. R. Kayumov
%T Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 1152-1154
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/
%G en
%F RM_2022_77_6_a7
A. D. Baranov; I. R. Kayumov. Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1152-1154. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/