Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1152-1154
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_2022_77_6_a7,
author = {A. D. Baranov and I. R. Kayumov},
title = {Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1152--1154},
publisher = {mathdoc},
volume = {77},
number = {6},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/}
}
TY - JOUR AU - A. D. Baranov AU - I. R. Kayumov TI - Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 1152 EP - 1154 VL - 77 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/ LA - en ID - RM_2022_77_6_a7 ER -
%0 Journal Article %A A. D. Baranov %A I. R. Kayumov %T Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 1152-1154 %V 77 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/ %G en %F RM_2022_77_6_a7
A. D. Baranov; I. R. Kayumov. Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1152-1154. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/