Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1152-1154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2022_77_6_a7,
     author = {A. D. Baranov and I. R. Kayumov},
     title = {Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1152--1154},
     year = {2022},
     volume = {77},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/}
}
TY  - JOUR
AU  - A. D. Baranov
AU  - I. R. Kayumov
TI  - Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 1152
EP  - 1154
VL  - 77
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/
LA  - en
ID  - RM_2022_77_6_a7
ER  - 
%0 Journal Article
%A A. D. Baranov
%A I. R. Kayumov
%T Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 1152-1154
%V 77
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/
%G en
%F RM_2022_77_6_a7
A. D. Baranov; I. R. Kayumov. Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1152-1154. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a7/

[1] E. P. Dolzhenko, Mat. Sb., 69(111):4 (1966), 497–524 ; English trabnsl. in Amer. Math. Soc. Transl. Ser. 2, 74, Amer. Math. Soc., Providence, RI, 1968, 61–90 | MR | Zbl | DOI

[2] V. V. Peller, Mat. Sb., 113(155):4(12) (1980), 538–581 ; English transl. in Sb. Math., 41:4 (1982), 443–479 | MR | Zbl | DOI

[3] S. Semmes, Integral Equations Operator Theory, 7:2 (1984), 241–281 | DOI | MR | Zbl

[4] A. A. Pekarskii, Mat. Sb., 124(166):4(8) (1984), 571–588 ; English transl. in Sb. Math., 52:2 (1985), 557–574 | MR | Zbl | DOI

[5] T. S. Mardvilko and A. A. Pekarskii, Mat. Sb., 202:9 (2011), 77–96 ; English transl. in Sb. Math., 202:9 (2011), 1327–1346 | DOI | MR | Zbl | DOI

[6] V. I. Dančenko (Danchenko), Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979), 277–293 ; English transl. in Math. USSR Izv., 14:2 (1980), 257–273 | MR | Zbl | DOI

[7] V. I. Danchenko, Mat. Sb., 187:10 (1996), 33–52 ; English transl. in Sb. Math., 187:10 (1996), 1443–1463 | DOI | MR | Zbl | DOI

[8] E. M. Dyn'kin, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR | Zbl

[9] E. Dyn'kin, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 77–94 | DOI | MR | Zbl

[10] A. D. Baranov and I. R. Kayumov, Isv. Ross. Akad Nauk Ser. Mat., 86:5 (2022), 5–17 ; English transl. in Izv. Math., 86:5 (2022), 839–851 | DOI | DOI

[11] S. Smirnov, Acta Math., 205:1 (2010), 189–197 | DOI | MR | Zbl