Asymptotic properties of Hermite–Padé polynomials and Katz points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1149-1151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2022_77_6_a6,
     author = {S. P. Suetin},
     title = {Asymptotic properties of {Hermite{\textendash}Pad\'e} polynomials and {Katz} points},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1149--1151},
     year = {2022},
     volume = {77},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a6/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Asymptotic properties of Hermite–Padé polynomials and Katz points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 1149
EP  - 1151
VL  - 77
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a6/
LA  - en
ID  - RM_2022_77_6_a6
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Asymptotic properties of Hermite–Padé polynomials and Katz points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 1149-1151
%V 77
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a6/
%G en
%F RM_2022_77_6_a6
S. P. Suetin. Asymptotic properties of Hermite–Padé polynomials and Katz points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1149-1151. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a6/

[1] A. D. Bykov and A. N. Duchko, Optics and Spectrosc., 120:5 (2016), 669–679 | DOI

[2] X. Chang, E. O. Dobrolyubov, and S. V. Krasnoshchekov, Phys. Chem. Chem. Phys., 24:11 (2022), 6655–6675 | DOI

[3] N. R. Ikonomov and S. P. Suetin, HEPAComp – Hermite–Padé approximant computation, Ver. 1.3/15.10.2020, 2020 http://justmathbg.info/hepacomp.html

[4] A. Katz, Nuclear Phys., 29 (1962), 353–372 | DOI | MR

[5] A. V. Komlov, Mat. Sb., 212:12 (2021), 40–76 ; English transl. in Sb. Math., 212:12 (2021), 1694–1729 | DOI | MR | Zbl | DOI

[6] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, and S. P. Suetin, Uspekhi Mat. Nauk, 71:2(428) (2016), 205–206 ; English transl. in Russian Math. Surveys, 71:2 (2016), 373–375 | DOI | MR | Zbl | DOI

[7] S. V. Krasnoshchekov, E. O. Dobrolyubov, M. A. Syzgantseva, and R. V. Palvelev, Molec. Phys., 118:11 (2020), e1743887, 7 pp. | DOI

[8] G. López Lagomasino and W. Van Assche, Mat. Sb., 209:7 (2018), 106–138 ; English transl. in Sb. Math., 209:7 (2018), 1019–1050 | DOI | MR | Zbl | DOI

[9] S. P. Suetin, Mat. Zametki, 104:6 (2018), 918–929 ; English transl. in Math. Notes, 104:6 (2018), 905–914 | DOI | MR | Zbl | DOI

[10] S. P. Suetin, Uspekhi Mat. Nauk, 75:4(454) (2020), 213–214 ; English transl. in Russian Math. Surveys, 75:4 (2020), 788–790 | DOI | MR | Zbl | DOI