@article{RM_2022_77_6_a6,
author = {S. P. Suetin},
title = {Asymptotic properties of {Hermite{\textendash}Pad\'e} polynomials and {Katz} points},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1149--1151},
year = {2022},
volume = {77},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a6/}
}
S. P. Suetin. Asymptotic properties of Hermite–Padé polynomials and Katz points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1149-1151. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a6/
[1] A. D. Bykov and A. N. Duchko, Optics and Spectrosc., 120:5 (2016), 669–679 | DOI
[2] X. Chang, E. O. Dobrolyubov, and S. V. Krasnoshchekov, Phys. Chem. Chem. Phys., 24:11 (2022), 6655–6675 | DOI
[3] N. R. Ikonomov and S. P. Suetin, HEPAComp – Hermite–Padé approximant computation, Ver. 1.3/15.10.2020, 2020 http://justmathbg.info/hepacomp.html
[4] A. Katz, Nuclear Phys., 29 (1962), 353–372 | DOI | MR
[5] A. V. Komlov, Mat. Sb., 212:12 (2021), 40–76 ; English transl. in Sb. Math., 212:12 (2021), 1694–1729 | DOI | MR | Zbl | DOI
[6] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, and S. P. Suetin, Uspekhi Mat. Nauk, 71:2(428) (2016), 205–206 ; English transl. in Russian Math. Surveys, 71:2 (2016), 373–375 | DOI | MR | Zbl | DOI
[7] S. V. Krasnoshchekov, E. O. Dobrolyubov, M. A. Syzgantseva, and R. V. Palvelev, Molec. Phys., 118:11 (2020), e1743887, 7 pp. | DOI
[8] G. López Lagomasino and W. Van Assche, Mat. Sb., 209:7 (2018), 106–138 ; English transl. in Sb. Math., 209:7 (2018), 1019–1050 | DOI | MR | Zbl | DOI
[9] S. P. Suetin, Mat. Zametki, 104:6 (2018), 918–929 ; English transl. in Math. Notes, 104:6 (2018), 905–914 | DOI | MR | Zbl | DOI
[10] S. P. Suetin, Uspekhi Mat. Nauk, 75:4(454) (2020), 213–214 ; English transl. in Russian Math. Surveys, 75:4 (2020), 788–790 | DOI | MR | Zbl | DOI