Trace formula for the magnetic Laplacian at zero energy level
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1107-1148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the trace formula for the magnetic Laplacian associated with a magnetic system on a compact manifold. This formula is a natural generalization of Gutzwiller's semiclassical trace formula and reduces to it in the case when the magnetic field form is exact. It differs slightly from the Guillemin–Uribe trace formula considered in a previous paper of the author and Taimanov. Moreover, in contrast to that paper, the focus is on the trace formula at the zero energy level, which is a critical energy level. An overview of the main notions and results related to the trace formula at the zero energy level is presented, various approaches to its proof are described, and concrete examples of its computation are given. In addition, a brief review of Gutzwiller's trace formula for regular and critical energy levels is presented. Bibliography: 88 titles.
Keywords: magnetic Laplacian, quasiclassical asymptotics
Mots-clés : trace formula, Gutzwiller's formula.
@article{RM_2022_77_6_a5,
     author = {Yu. A. Kordyukov},
     title = {Trace formula for the magnetic {Laplacian} at zero energy level},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1107--1148},
     year = {2022},
     volume = {77},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a5/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
TI  - Trace formula for the magnetic Laplacian at zero energy level
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 1107
EP  - 1148
VL  - 77
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a5/
LA  - en
ID  - RM_2022_77_6_a5
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%T Trace formula for the magnetic Laplacian at zero energy level
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 1107-1148
%V 77
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a5/
%G en
%F RM_2022_77_6_a5
Yu. A. Kordyukov. Trace formula for the magnetic Laplacian at zero energy level. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1107-1148. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a5/

[1] R. Balian and C. Bloch, “Solution of the Schrödinger equation in term of classical paths”, Ann. Physics, 85:2 (1974), 514–545 | DOI | MR | Zbl

[2] V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237 | DOI | MR | Zbl

[3] F. A. Berezin, “General concept of quantization”, Comm. Math. Phys., 40:2 (1975), 153–174 | DOI | MR | Zbl

[4] J.-M. Bismut, “Demailly's asymptotic Morse inequalities: a heat equation proof”, J. Funct. Anal., 72:2 (1987), 263–278 | DOI | MR | Zbl

[5] J.-M. Bismut and G. Lebeau, “Complex immersions and Quillen metrics”, Inst. Hautes Études Sci. Publ. Math., 74 (1991), 1–297 | MR | Zbl

[6] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and $\operatorname{gl}(N)$, $N\to\infty$ limits”, Comm. Math. Phys., 165:2 (1994), 281–296 | DOI | MR | Zbl

[7] D. Borthwick and A. Uribe, “Almost complex structures and geometric quantization”, Math. Res. Lett., 3:6 (1996), 845–861 | DOI | MR | Zbl

[8] D. Borthwick and A. Uribe, “The semiclassical structure of low-energy states in the presence of a magnetic field”, Trans. Amer. Math. Soc., 359:4 (2007), 1875–1888 | DOI | MR | Zbl

[9] Th. Bouche, “Convergence de la métrique de Fubini–Study d'un fibré linéaire positif”, Ann. Inst. Fourier (Grenoble), 49 (1990), 117–130 | DOI | MR | Zbl

[10] L. Boutet de Monvel, “Hypoelliptic operators with double characteristics and related pseudo-differential operators”, Comm. Pure Appl. Math., 27 (1974), 585–639 | DOI | MR | Zbl

[11] L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators, Ann. of Math. Stud., 99, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981, v+161 pp. | DOI | MR | Zbl

[12] L. Boutet de Monvel and J. Sjöstrand, “Sur la singularité des noyaux de Bergman et de Szegő”, Journées: Équations aux dérivées partielles de Rennes (1975), Astérisque, 34-35, Soc. Math. France, Paris, 1976, 123–164 | MR | Zbl

[13] R. Brummelhuis, T. Paul, and A. Uribe, “Spectral estimates around a critical level”, Duke Math. J., 78:3 (1995), 477–530 | DOI | MR | Zbl

[14] R. Brummelhuis and A. Uribe, “A semi-classical trace formula for Schrödinger operators”, Comm. Math. Phys., 136:3 (1991), 567–584 | DOI | MR | Zbl

[15] B. Camus, “A semi-classical trace formula at a non-degenerate critical level”, J. Funct. Anal., 208:2 (2004), 446–481 | DOI | MR | Zbl

[16] B. Camus, “A semi-classical trace formula at a totally degenerate critical level”, Comm. Math. Phys., 247:2 (2004), 513–526 | DOI | MR | Zbl

[17] B. Camus, “Contributions of non-extremum critical points to the semi-classical trace formula”, J. Funct. Anal., 217:1 (2004), 79–102 | DOI | MR | Zbl

[18] B. Camus, “Semiclassical spectral estimates for Schrödinger operators at a critical energy level. Case of a degenerate minimum of the potential”, J. Math. Anal. Appl., 341:2 (2008), 1170–1180 | DOI | MR | Zbl

[19] A. M. Charbonnel and G. Popov, “A semi-classical trace formula for several commuting operators”, Comm. Partial Differential Equations, 24:1-2 (1999), 283–323 | DOI | MR | Zbl

[20] L. Charles, Landau levels on a compact manifold, 2022 (v1 – 2020), 60 pp., arXiv: 2012.14190

[21] L. Charles, On the spectrum of non degenerate magnetic Laplacian, 2021, 58 pp., arXiv: 2109.05508

[22] J. Chazarain, “Formule de Poisson pour les variétés riemanniennes”, Invent. Math., 24 (1974), 65–82 | DOI | MR | Zbl

[23] Y. Colin de Verdière, “Spectre du laplacien et longueurs des géodésiques périodiques. I”, Compositio Math., 27 (1973), 83–106 | MR | Zbl

[24] Y. Colin de Verdière, “Spectre du laplacien et longueurs des géodésiques périodiques. II”, Compositio Math., 27 (1973), 159–184 | MR | Zbl

[25] Y. Colin de Verdière, “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. I. Le cas non intégrable”, Duke Math. J., 46:1 (1979), 169–182 | DOI | MR | Zbl

[26] Y. Colin de Verdière, “Spectrum of the Laplace operator and periodic geodesics: thirty years after”, Ann. Inst. Fourier (Grenoble), 57:7 (2007), 2429–2463 | DOI | MR | Zbl

[27] M. Combescure, J. Ralston, and D. Robert, “A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition”, Comm. Math. Phys., 202:2 (1999), 463–480 | DOI | MR | Zbl

[28] Xianzhe Dai, Kefeng Liu, and Xiaonan Ma, “On the asymptotic expansion of Bergman kernel”, J. Differential Geom., 72:1 (2006), 1–41 | DOI | MR | Zbl

[29] J.-P. Demailly, “Champs magnétiques et inégalités de Morse pour la $d''$-cohomologie”, Ann. Inst. Fourier (Grenoble), 35:4 (1985), 189–229 | DOI | MR | Zbl

[30] J.-P. Demailly, “Holomorphic Morse inequalities”, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA 1989), Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, 93–114 | DOI | MR | Zbl

[31] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999, xi+227 pp. | DOI | MR | Zbl

[32] S. Dozias, “Clustering for the spectrum of $h$-pseudodifferential operators with periodic flow on an energy surface”, J. Funct. Anal., 145:2 (1997), 296–311 | DOI | MR | Zbl

[33] J. J. Duistermaat and V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79 | DOI | MR | Zbl

[34] F. Faure and M. Tsujii, Prequantum transfer operator for symplectic Anosov diffeomorphism, Astérisque, 375, Soc. Math. France, Paris, 2015, ix+222 pp. | MR | Zbl

[35] S. Fournais and B. Helffer, Spectral methods in surface superconductivity, Progr. Nonlinear Differential Equations Appl., 77, Birkhäuser Boston, Inc., Boston, MA, 2010, xx+324 pp. | DOI | MR | Zbl

[36] V. W. Guillemin, “Symplectic spinors and partial differential equations”, Géométrie symplectique et physique mathématique (Aix-en-Provence 1974), Éditions CNRS, Paris, 1975, 217–252 | MR | Zbl

[37] V. Guillemin and Sh. Sternberg, Semi-classical analysis, International Press, Boston, MA, 2013, xxiv+446 pp. | MR | Zbl

[38] V. Guillemin and A. Uribe, “The Laplace operator on the $n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $n$”, Asymptotic Anal., 1:2 (1988), 105–113 | DOI | MR | Zbl

[39] V. Guillemin and A. Uribe, “Circular symmetry and the trace formula”, Invent. Math., 96:2 (1989), 385–423 | DOI | MR | Zbl

[40] V. Guillemin, A. Uribe, and Z. Wang, “Semiclassical states associated with isotropic submanifolds of phase space”, Lett. Math. Phys., 106:12 (2016), 1695–1728 | DOI | MR | Zbl

[41] V. W. Guillemin, A. Uribe, and Zuoqin Wang, “Integral representations of isotropic semiclassical functions and applications”, J. Spectr. Theory, 12:1 (2022), 227–258 | DOI | MR | Zbl

[42] M. C. Gutzwiller, “Periodic orbits and classical quantization conditions”, J. Math. Phys., 12 (1971), 343–358 | DOI

[43] M. C. Gutzwiller, Chaos in classical and quantum mechanics, Interdiscip. Appl. Math, 1, Springer-Verlag, New York, 1990, xiv+432 pp. | DOI | MR | Zbl

[44] B. Helffer and Yu. A. Kordyukov, “Semiclassical analysis of Schrödinger operators with magnetic wells”, Spectral and scattering theory for quantum magnetic systems, Contemp. Math., 500, Amer. Math. Soc., Providence, RI, 2009, 105–121 | DOI | MR | Zbl

[45] B. Helffer and Yu. A. Kordyukov, “Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field”, Geometric methods in physics, Trends Math., Birkhäuser/Springer, Cham, 2014, 259–278 | DOI | MR | Zbl

[46] B. Helffer and J. Sjöstrand, “Equation de Schrödinger avec champ magnétique et équation de Harper”, Schrödinger operators (Sønderborg 1988), Lecture Notes in Phys., 345, Springer, Berlin, 1989, 118–197 | DOI | MR | Zbl

[47] L. Ioos, Wen Lu, Xiaonan Ma, and G. Marinescu, “Berezin–Toeplitz quantization for eigenstates of the Bochner Laplacian on symplectic manifolds”, J. Geom. Anal., 30:3 (2020), 2615–2646 | DOI | MR | Zbl

[48] D. Khuat-Duy, “A semi-classical trace formula for Schrödinger operators in the case of a critical energy level”, J. Funct. Anal., 146:2 (1997), 299–351 | DOI | MR | Zbl

[49] Yu. A. Kordyukov, “On asymptotic expansions of generalized Bergman kernels on symplectic manifolds”, Algebra i Analiz, 30:2 (2018), 163–187 ; English transl. in St. Petersburg Math. J., 30:2 (2019), 267–283 | MR | Zbl | DOI

[50] Yu. A. Kordyukov, “Semiclassical spectral analysis of the Bochner–Schrödinger operator on symplectic manifolds of bounded geometry”, Anal. Math. Phys., 12:1 (2022), 22, 37 pp. | DOI | MR | Zbl

[51] Yu. A. Kordyukov, “Berezin–Toeplitz quantization associated with higher Landau levels of the Bochner Laplacian”, J. Spectr. Theory, 12:1 (2022), 143–167 | DOI | MR | Zbl

[52] Yu. A. Kordyukov, Semiclassical asymptotic expansions for functions of the Bochner–Schrödinger operator, 2022, 24 pp., arXiv: 2205.09011

[53] Yu. A. Kordyukov, Xiaonan Ma, and G. Marinescu, “Generalized Bergman kernels on symplectic manifolds of bounded geometry”, Comm. Partial Differential Equations, 44:11 (2019), 1037–1071 | DOI | MR | Zbl

[54] Yu. A. Kordyukov and I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Uspekhi Mat. Nauk, 74:2(446) (2019), 149–186 ; English transl. in Russian Math. Surveys, 74:2 (2019), 325–361 | DOI | MR | Zbl | DOI

[55] Yu. A. Kordyukov and I. A. Taimanov, “Quasi-classical approximation for magnetic monopoles”, Uspekhi Mat. Nauk, 75:6(456) (2020), 85–106 ; English transl. in Russian Math. Surveys, 75:6 (2020), 1067–1088 | DOI | MR | Zbl | DOI

[56] Yu. A. Kordyukov and I. A. Taimanov, “Trace formula for the magnetic Laplacian on a compact hyperbolic surface”, Regul. Chaotic Dyn., 27:4 (2022), 460–476 | DOI | MR | Zbl

[57] S. Z. Levendorskii, “Non-classical spectral asymptotics”, Uspekhi Mat. Nauk, 43:1(259) (1988), 123–157 ; English transl. in Russian Math. Surveys, 43:1 (1988), 149–192 | MR | Zbl | DOI

[58] Xiaonan Ma and G. Marinescu, “The $\mathrm{spin}^c$ Dirac operator on high tensor powers of a line bundle”, Math. Z., 240:3 (2002), 651–664 | DOI | MR | Zbl

[59] Xiaonan Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progr. Math., 254, Birkhäuser Verlag, Basel, 2007, xiv+422 pp. | DOI | MR | Zbl

[60] Xiaonan Ma and G. Marinescu, “Generalized Bergman kernels on symplectic manifolds”, Adv. Math., 217:4 (2008), 1756–1815 | DOI | MR | Zbl

[61] Xiaonan Ma and G. Marinescu, “Toeplitz operators on symplectic manifolds”, J. Geom. Anal., 18:2 (2008), 565–611 | DOI | MR | Zbl

[62] Xiaonan Ma and G. Marinescu, “Exponential estimate for the asymptotics of Bergman kernels”, Math. Ann., 362:3-4 (2015), 1327–1347 | DOI | MR | Zbl

[63] Xiaonan Ma, G. Marinescu, and S. Zelditch, “Scaling asymptotics of heat kernels of line bundles”, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math., 644, Amer. Math. Soc., Providence, RI, 2015, 175–202 | DOI | MR | Zbl

[64] G. Marinescu and N. Savale, Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface, 2018, 49 pp., arXiv: 1811.00992

[65] V. P. Maslov, The complex WKB method for nonlinear equations, Nauka, Moscow, 1977, 384 pp. ; English transl. of 1st part V. P. Maslov, The complex WKB method for nonlinear equations. I. Linear theory, Progr. Phys., 16, Birkhäuser Verlag, Basel, 1994, viii+300 pp. | MR | Zbl | DOI | MR | Zbl

[66] E. Meinrenken, “Semiclassical principal symbols and Gutzwiller's trace formula”, Rep. Math. Phys., 31:3 (1992), 279–295 | DOI | MR | Zbl

[67] E. Meinrenken, “Trace formulas and the Conley–Zehnder index”, J. Geom. Phys., 13:1 (1994), 1–15 | DOI | MR | Zbl

[68] A. Melin and J. Sjöstrand, “Fourier integral operators with complex-valued phase functions”, Fourier integral operators and partial differential equations (Univ. Nice, Nice 1974), Lecture Notes in Math., 459, Springer, Berlin, 1975, 120–223 | DOI | MR | Zbl

[69] L. Morin, A semiclassical Birkhoff normal form for constant-rank magnetic fields, 2021 (v1 – 2020), 36 pp., arXiv: 2005.09386

[70] L. Morin, “A semiclassical Birkhoff normal form for symplectic magnetic wells”, J. Spectr. Theory, 12:2 (2022), 459–496 | DOI | MR | Zbl

[71] L. Morin, “Review on spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle”, Confluentes Math., 14:1 (2022), 65–79 | DOI | Zbl

[72] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Uspekhi Mat. Nauk, 37:5(227) (1982), 3–49 ; English transl. in Russian Math. Surveys, 37:5 (1982), 1–56 | MR | Zbl | DOI

[73] S. P. Novikov and I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse (LSM). I”, Funktsional. Anal. i Prilozhen., 15:3 (1981), 54–66 ; English transl. in Funct. Anal. Appl., 15:3 (1981), 197–207 | MR | Zbl | DOI

[74] S. P. Novikov and I. A. Taimanov, “Periodic extremals of many-valued or not-everywhere-positive functionals”, Dokl. Akad. Nauk SSSR, 274:1 (1984), 26–28 ; English transl. in Soviet Math. Dokl., 29 (1984), 18–20 | MR | Zbl

[75] J.-P. Ortega and T. S. Ratiu, Momentum maps and Hamiltonian reduction, Progr. Math., 222, Birkhäuser Boston, Inc., Boston, MA, 2004, xxxiv+497 pp. | DOI | MR | Zbl

[76] T. Paul and A. Uribe, “The semi-classical trace formula and propagation of wave packets”, J. Funct. Anal., 132:1 (1995), 192–249 | DOI | MR | Zbl

[77] V. Petkov and G. Popov, “Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators”, Ann. Inst. H. Poincaré Phys. Théor., 68:1 (1998), 17–83 | MR | Zbl

[78] N. Raymond, Bound states of the magnetic Schrödinger operator, EMS Tracts in Math., 27, Eur. Math. Soc. (EMS), Zürich, 2017, xiv+380 pp. | DOI | MR | Zbl

[79] N. Savale, “Koszul complexes, Birkhoff normal form and the magnetic Dirac operator”, Anal. PDE, 10:8 (2017), 1793–1844 | DOI | MR | Zbl

[80] N. Savale, “A Gutzwiller type trace formula for the magnetic Dirac operator”, Geom. Funct. Anal., 28:5 (2018), 1420–1486 | DOI | MR | Zbl

[81] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N. S.), 20 (1956), 47–87 | MR | Zbl

[82] J. Sjöstrand and M. Zworski, “Quantum monodromy and semi-classical trace formulæ”, J. Math. Pures Appl. (9), 81:1 (2002), 1–33 | DOI | MR | Zbl

[83] I. A. Taĭmanov, “The principle of throwing out cycles in Morse–Novikov theory”, Dokl. Akad. Nauk SSSR, 268:1 (1983), 46–50 ; English transl. in Soviet Math. Dokl., 27 (1983), 43–46 | MR | Zbl

[84] I. A. Taĭmanov, “Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals”, Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991), 367–383 ; English transl. in Izv. Math., 38:2 (1992), 359–374 | MR | Zbl | DOI

[85] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Uspekhi Mat. Nauk, 47:2(284) (1992), 143–185 ; English transl. in Russian Math. Surveys, 47:2 (1992), 163–211 | MR | Zbl | DOI

[86] I. A. Taĭmanov, “Closed nonself-intersecting extremals of multivalued functionals”, Sibirsk. Mat. Zh., 33:4 (1992), 155–162 ; English transl. in Siberian Math. J., 33:4 (1992), 686–692 | MR | Zbl | DOI

[87] S. Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Math., 1821, Springer-Verlag, Berlin, 2003, vi+236 pp. | DOI | MR | Zbl

[88] A. Uribe, “Trace formulae”, First summer school in analysis and mathematical physics (Cuernavaca Morelos 1998), Contemp. Math., 260, Aportaciones Mat., Amer. Math. Soc., Providence, RI, 2000, 61–90 | DOI | MR | Zbl