On the integrability of the equations of dynamics in a non-potential force field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1087-1106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A range of issues related to the integration of the equations of motion of mechanical systems in non-potential force fields (often called circulatory systems) are discussed. The approach to integration is based on the Euler–Jacobi–Lie theorem: for exact integration of a system with $n$ degrees of freedom it is necessary to have $2n-2$ additional first integrals and symmetry fields (taking the conservation of the phase volume into account) which are in certain natural relations to one another. The cases of motion in non-potential force fields that are integrable by separation of variables are specified. Geometric properties of systems with non-Noether symmetry fields are discussed. Examples of the existence of irreducible polynomial integrals of the third degree in the momentum are given. The problem of conditions for the existence of single-valued polynomial integrals of circulatory systems with two degrees of freedom and toric configuration spaces is considered. It is shown that in a typical case the equations of motion do not admit non-constant polynomial integrals. Bibliography: 32 titles.
Keywords: circulatory system, first integrals, symmetry fields, Euler–Jacobi–Lie theorem, separation of variables, Hodge's theorem, resonances.
Mots-clés : quasiperiodic motion
@article{RM_2022_77_6_a4,
     author = {V. V. Kozlov},
     title = {On the integrability of the equations of~dynamics in a~non-potential force field},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1087--1106},
     year = {2022},
     volume = {77},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a4/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - On the integrability of the equations of dynamics in a non-potential force field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 1087
EP  - 1106
VL  - 77
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a4/
LA  - en
ID  - RM_2022_77_6_a4
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T On the integrability of the equations of dynamics in a non-potential force field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 1087-1106
%V 77
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a4/
%G en
%F RM_2022_77_6_a4
V. V. Kozlov. On the integrability of the equations of dynamics in a non-potential force field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1087-1106. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a4/

[1] V. F. Zhuravlev, “Decomposition of nonlinear generalized forces into potential and circulatory components”, Dokl. Ross. Akad. Nauk, 414:5 (2007), 622–624 ; English transl. in Dokl. Phys., 52:6 (2007), 339–341 | MR | Zbl | DOI

[2] J. Lerbet, N. Challamel, F. Nicot, and F. Darve, “Geometric degree of nonconservativity: set of solutions for the linear case and extension to the differentiable non-linear case”, Appl. Math. Model., 40:11-12 (2016), 5930–5941 | DOI | MR | Zbl

[3] J. Lerbet, N. Challamel, F. Nicot, and F. Darve, “Coordinate free nonlinear incremental discrete mechanics”, ZAMM Z. Angew. Math. Mech., 98:10 (2018), 1813–1833 | DOI | MR

[4] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Actualités Sci. Ind., 1222, Publ. Inst. Math. Univ. Nancago, III, Hermann et Cie, Paris, 1955, vii+196 pp. | MR | Zbl

[5] V. V. Kozlov, “On the instability of equilibria of mechanical systems in nonpotential force fields in the case of typical degeneracies”, Acta Mech., 232:9 (2021), 3331–3341 | DOI | MR | Zbl

[6] A. A. Mailybaev and A. P. Seiranyan, Multiparameter stability problems: theory and applications to mechanics, Fizmatlit, Moscow, 2009, 399 pp. (Russian)

[7] O. N. Kirillov, Nonconservative stability problems of modern physics, De Gruyter Stud. Math. Phys., 14, De Gruyter, Berlin, 2013, xviii+429 pp. | DOI | MR | Zbl

[8] V. V. Kozlov, “Integrals of circulatory systems which are quadratic in momenta”, Regul. Chaotic Dyn., 26:6 (2021), 647–657 | DOI | MR | Zbl

[9] V. V. Kozlov, “On the integrability of circulatory systems”, Regul. Chaotic Dyn., 27:1 (2022), 11–17 | DOI | MR | Zbl

[10] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Dokl. Akad. Nauk SSSR, 249:6 (1979), 1299–1302 ; English transl. in Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl

[11] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Izv. Akad. Nauk SSSR Ser. Mat., 46:5 (1982), 994–1010 ; English transl. in Math. USSR-Izv., 21:2 (1983), 291–306 | MR | Zbl | DOI

[12] I. A. Taĭmanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 429–435 ; English transl. in Math. USSR-Izv., 30:2 (1988), 403–409 | MR | Zbl | DOI

[13] I. A. Taimanov, “Topological properties of integrable geodesic flows”, Mat. Zametki, 44:2 (1988), 283–284 (Russian) | MR | Zbl

[14] V. V. Kozlov and N. V. Denisova, “Polynomial integrals of geodesic flows on a two-dimensional torus”, Mat. Sb., 185:12 (1994), 49–64 ; English transl. in Sb. Math., 83:2 (1995), 469–481 | MR | Zbl | DOI

[15] I. A. Taimanov, “On first integrals of geodesic flows on a two-torus”, Current problems in mechanics, Tr. Mat. Inst. Steklova, 295, MAIK Nauka/Interpeiodika, Moscow, 2016, 241–260 ; English transl. in Proc. Steklov Inst. Math., 295 (2016), 225–242 | DOI | MR | Zbl | DOI

[16] V. V. Kozlov, “Tensor invariants and integration of differential equations”, Uspekhi Mat. Nauk, 74:1(445) (2019), 117–148 ; English transl. in Russian Math. Surveys, 74:1 (2019), 111–140 | DOI | MR | Zbl | DOI

[17] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl

[18] V. V. Kozlov, “The Euler–Jakobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343 | DOI | MR | Zbl

[19] V. V. Kozlov, Method of qualitative analysis in rigid body dynamics, 2nd ed., Regulyarnaya i Khaotichaskaya Dinamika, Moscow–Izhevsk, 2000, 248 pp. (Russian) | MR | Zbl

[20] A. V. Tsyganov, Intergrable systems in the context of method of separation of variables, Sovr. Mat., Regulyarnaya i Khaotichaskaya Dinamika, Moscow–Izhevsk, 2005, 384 pp. (Russian)

[21] A. P. Veselov, “Time substitution in integrable systems”, Vestn. Moskov. Uiv. Ser. 1 Mat. Mekh., 1987, no. 5, 25–29 ; English transl. in Moscow Univ. Math. Bull., 42:5 (1987), 26–30 | MR | Zbl

[22] V. V. Kozlov, “The Liouville property of invariant measures of completely integrable systems and the Monge–Ampère equation”, Mat. Zametki, 53:4 (1993), 45–52 ; English transl. in Math. Notes, 53:4 (1993), 389–393 | MR | Zbl | DOI

[23] H. Poincaré, Calcul des probabilités, 2e éd., Gauthier-Villars, Paris, 1912, iv+336 pp. | MR | Zbl

[24] A. N. Kolmogorov, “Dynamical systems with integral invariant on a torus”, Dokl. Akad. Nauk SSSR, 93:5 (1953), 763–766 (Russian) | MR | Zbl

[25] V. I. Arnol'd, “Poly-integrable flows”, Algebra i Analiz, 4:6 (1992), 54–62 ; English transl. in St. Petersburg Math. J., 4:6 (1993), 1103–1110 | MR | Zbl

[26] A. V. Rozhdestvenskii, “On the additive cohomological equation and time change for a linear flow on the torus with a Diophantine frequency vector”, Mat. Sb., 195:5 (2004), 115–156 ; English transl. in Sb. Math., 195:5 (2004), 723–764 | DOI | MR | Zbl | DOI

[27] V. V. Kozlov, “Dynamical systems with multivalued integrals on a torus”, Dynmaical systems and optimazation, Tr. Mat. Inst. Steklova, 256, Nauka, MAIK Nauka/Interperiodika, Moscow, 2007, 201–218 ; English transl. in Proc. Steklov Inst. Math., 256 (2007), 188–205 | MR | Zbl | DOI

[28] A. V. Borisov and I. C. Mamaev, Modern methods in the theory of integrable systems, Institute for Computer Studies, Moscow–Izhevsk, 2003, 294 pp. (Russian) | MR | Zbl

[29] M. L. Byalyi, “First integrals that are polynomial in momenta for a mechanical system on a two-dimensional torus”, Funktsional. Anal. i Prilozhen., 21:4 (1987), 64–65 ; English transl. in Funct. Anal. Appl., 21:4 (1987), 310–312 | MR | Zbl | DOI

[30] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Gauthier-Villars, Paris, 1892, 385 pp. | MR | Zbl

[31] V. V. Kozlov and D. V. Treshchev, “On the integrability of Hamiltonian systems with toral position space”, Mat. Sb., 135(177):1 (1988), 119–138 ; English transl. in Math. USSR-Sb., 63:1 (1989), 121–139 | MR | Zbl | DOI

[32] L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, With the assistance of L. Markus, W. Massey, and an appendix by L. Greenberg, Ann. of Math. Stud., 53, Princeton Univ. Press, Princeton, NJ, 1963, vii+107 pp. | MR | Zbl