Geometry of quasiperiodic functions on the plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1061-1085 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A review of the most recent results obtained in the Novikov problem of the description of the geometry of the level curves of quasiperiodic functions in the plane is presented. Most of the paper is devoted to the results obtained for functions with three quasiperiods, which play a very important role in the theory of transport phenomena in metals. In that part, along with previously known results, a number of new results are presented that refine significantly the general description of the picture arising. New statements are also presented for functions with more than three quasiperiods, which open approaches to further investigations of the Novikov problem in the most general formulation. The role of the Novikov problem in various fields of mathematical and theoretical physics is discussed. Bibliography: 60 titles.
Keywords: quasiperiodic function, stability zone, angular diagram.
Mots-clés : Fermi surface
@article{RM_2022_77_6_a3,
     author = {I. A. Dynnikov and A. Ya. Mal'tsev and S. P. Novikov},
     title = {Geometry of quasiperiodic functions on the plane},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1061--1085},
     year = {2022},
     volume = {77},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a3/}
}
TY  - JOUR
AU  - I. A. Dynnikov
AU  - A. Ya. Mal'tsev
AU  - S. P. Novikov
TI  - Geometry of quasiperiodic functions on the plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 1061
EP  - 1085
VL  - 77
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a3/
LA  - en
ID  - RM_2022_77_6_a3
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%A A. Ya. Mal'tsev
%A S. P. Novikov
%T Geometry of quasiperiodic functions on the plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 1061-1085
%V 77
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a3/
%G en
%F RM_2022_77_6_a3
I. A. Dynnikov; A. Ya. Mal'tsev; S. P. Novikov. Geometry of quasiperiodic functions on the plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1061-1085. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a3/

[1] H. Bohr, “Zur Theorie der fastperiodischen Funktionen. III. Dirichletentwicklung analytischer Funktionen”, Acta Math., 47:3 (1926), 237–281 | DOI | MR | Zbl

[2] A. S. Besicovitch, “On generalized almost periodic functions”, Proc. London Math. Soc. (2), 25:1 (1926), 495–512 | DOI | MR | Zbl

[3] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Uspekhi Mat. Nauk, 37:5(227) (1982), 3–49 ; English transl. in Russian Math. Surveys, 37:5 (1982), 1–56 | MR | Zbl | DOI

[4] I. M. Lifshitz, M. Ia. Azbel', and M. I. Kaganov, “The theory of galvanomagnetic effects in metals”, Zh. Èksper. Teoret. Fiz., 31:1 (1957), 63–79 ; English transl. in Soviet Phys. JETP, 4:1 (1957), 41–54 | Zbl

[5] I. M. Lifshitz and V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. I”, Soviet Phys. JETP, 35:5 (1959), 1251–1264; English transl. in Soviet Phys. JETP, 8:5 (1959), 875–883

[6] I. M. Lifshitz and V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. II”, Zh. Èksper. Teoret. Fiz., 38:1 (1960), 188–193; English transl. in Soviet Phys. JETP, 11:1 (1960), 137–141

[7] I. M. Lifshits, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals, Nauka, Moscow, 1971, 416 pp.; English transl. Consultants Bureau, New York, 1973, x+326 pp.

[8] A. V. Zorich, “A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field”, Uspekhi Mat. Nauk, 39:5(239) (1984), 235–236 ; English transl. in Russian Math. Surveys, 39:5 (1984), 287–288 | MR | Zbl | DOI

[9] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture for the case of small perturbations of rational magnetic fields”, Uspekhi Mat. Nauk, 47:3(285) (1992), 161–162 ; English transl. in Russian Math. Surveys, 47:3 (1992), 172–173 | MR | Zbl | DOI

[10] S. P. Tsarev, Private communication, 1992–1993

[11] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture on the semiclassical motion of an electron”, Mat. Zametki, 53:5 (1993), 57–68 ; English transl. in Math. Notes, 53:5 (1993), 495–501 | MR | Zbl | DOI

[12] I. A. Dynnikov, “Surfaces in 3-torus: geometry of plane sections”, European congress of mathematics (Budapest 1996), v. 1, Progr. Math., 168, Birkhäuser, Basel, 1998, 162–177 | MR | Zbl

[13] I. A. Dynnikov, “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 45–73 | DOI | MR | Zbl

[14] I. A. Dynnikov, “The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron”, Uspekhi Mat. Nauk, 54:1(325) (1999), 21–60 ; English transl. in Russian Math. Surveys, 54:1 (1999), 21–59 | DOI | MR | Zbl | DOI

[15] S. P. Novikov and A. Ya. Mal'tsev, “Topological quantum characteristics observed in the investigation of the conductivity in normal metals”, Pis'ma Zh. Èksper. Teoret. Fiz., 63:10 (1996), 809–813; English transl. in JETP Lett., 63:10 (1996), 855–860 | DOI

[16] S. P. Novikov and A. Ya. Mal'tsev, “Topological phenomena in normal metals”, Uspekhi Fizicheskikh Nauk, 168:3 (1998), 249–258 ; English transl. in Phys. Usp., 41:3 (1998), 231–239 | DOI | DOI

[17] A. Ya. Mal'tsev, “Anomalous behavior of the electrical conductivity tensor in strong magnetic fields”, Zh. Èksper. Teoret. Fiz., 112:5 (1997), 1710–1726; English transl. in JETP, 85:5 (1997), 934–942 | DOI

[18] A. Ya. Maltsev and S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Topology and physics, Tr. Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 296–315 ; English transl. in Proc. Steklov Inst. Math., 302 (2018), 279–297 | DOI | MR | DOI

[19] A. Zorich, “Asymptotic flag of an orientable measured foliation on a surface”, Geometric study of foliations (Tokyo 1993), World Sci. Publ., River Edge, NJ, 1994, 479–498 | MR

[20] A. Zorich, “Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents”, Ann. Inst. Fourier (Grenoble), 46:2 (1996), 325–370 | DOI | MR | Zbl

[21] A. Zorich, “On hyperplane sections of periodic surfaces”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc, Providence, RI, 1997, 173–189 | DOI | MR | Zbl

[22] A. Zorich, “Deviation for interval exchange transformations”, Ergodic Theory Dynam. Systems, 17:6 (1997), 1477–1499 | DOI | MR | Zbl

[23] A. Zorich, “How do the leaves of a closed 1-form wind around a surface?”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, 135–178 | DOI | MR | Zbl

[24] R. De Leo, “The existence and measure of ergodic foliations in Novikov's problem of the semiclassical motion of an electron”, Uspekhi Mat. Nauk, 55:1(331) (2000), 181–182 ; English transl. in Russian Math. Surveys, 55:1 (2000), 166–168 | DOI | MR | Zbl | DOI

[25] R. De Leo, “Characterization of the set of ‘ergodic directions’ in Novikov's problem of quasi-electron orbits in normal metals”, Uspekhi Mat. Nauk, 58:5(353) (2003), 197–198 ; English transl. in Russian Math. Surveys, 58:5 (2003), 1042–1043 | DOI | MR | Zbl | DOI

[26] R. De Leo, “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron”, Experiment. Math., 15:1 (2006), 109–124 | DOI | MR | Zbl

[27] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics and geometry (Les Houches 2003), v. 1, On random matrices, zeta functions and dynamical systems, 2nd print., Springer, Berlin, 2006, 437–583 | MR | Zbl

[28] R. De Leo and I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Uspekhi Mat. Nauk, 62:5(377) (2007), 151–152 ; English transl. in Russian Math. Surveys, 62:5 (2007), 990–992 | DOI | MR | Zbl | DOI

[29] I. A. Dynnikov, “Interval identification systems and plane sections of 3-periodic surfaces”, Geometry, topology, and mathematical physics. I, Tr. Mat. Inst. Steklova, 263, MAIK Nauka/Interperiodica, Moscow, 2008, 72–84 ; English transl. in Proc. Steklov Inst. Math., 263 (2008), 65–77 | MR | Zbl | DOI

[30] R. DeLeo and I. A. Dynnikov, “Geometry of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$”, Geom. Dedicata, 138:1 (2009), 51–67 | DOI | MR | Zbl

[31] A. Skripchenko, “Symmetric interval identification systems of order three”, Discrete Contin. Dyn. Syst., 32:2 (2012), 643–656 | DOI | MR | Zbl

[32] A. Skripchenko, “On connectedness of chaotic sections of some 3-periodic surfaces”, Ann. Global Anal. Geom., 43:3 (2013), 253–271 | DOI | MR | Zbl

[33] I. Dynnikov and A. Skripchenko, “On typical leaves of a measured foliated 2-complex of thin type”, Topology, geometry, integrable systems, and mathematical physics, Novikov's seminar 2012–2014, Amer. Math. Soc. Transl. Ser. 2, 234, Adv. Math. Sci., 67, Amer. Math. Soc., Providence, RI, 2014, 173–199 | DOI | MR | Zbl

[34] I. Dynnikov and A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Tr. Mosk. Mat. Obs., 76, no. 2, Moscow Centre for Continuous Mathematical Education, Moscow, 2015, 287–308 ; Trans. Moscow Math. Soc., 76:2 (2015), 251–269 | Zbl | DOI | MR

[35] A. Avila, P. Hubert, and A. Skripchenko, “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. Math., 206:1 (2016), 109–146 | DOI | MR | Zbl

[36] A. Avila, P. Hubert, and A. Skripchenko, “On the Hausdorff dimension of the Rauzy gasket”, Bull. Soc. Math. France, 144:3 (2016), 539–568 | DOI | MR | Zbl

[37] L. Guidoni, B. Dépret, A. di Stefano, and P. Verkerk, “Atomic diffusion in an optical quasicrystal with five-fold symmetry”, Phys. Rev. A, 60:6 (1999), R4233–R4236 | DOI

[38] A. Ya. Maltsev, “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J. Math. Phys., 45:3 (2004), 1128–1149 | DOI | MR | Zbl

[39] L. Sanchez-Palencia and L. Santos, “Bose–Einstein condensates in optical quasicrystal lattices”, Phys. Rev. A, 72:5 (2005), 053607 | DOI

[40] K. Viebahn, M. Sbroscia, E. Carter, Jr-Chiun Yu, and U. Schneider, “Matter-wave diffraction from a quasicrystalline optical lattice”, Phys. Rev. Lett., 122:11 (2019), 110404 | DOI

[41] R. Gautier, Hepeng Yao, and L. Sanchez-Palencia, “Strongly interacting bosons in a two-dimensional quasicrystal lattice”, Phys. Rev. Lett., 126:11 (2021), 110401 | DOI

[42] I. Dynnikov and A. Maltsev, “Features of the motion of ultracold atoms in quasiperiodic potentials”, Zh. Èksper. Teoret. Fiz., 160:6 (2021), 835–864 ; English transl. in JETP, 133:6 (2021), 711–736 | DOI | DOI

[43] D. Stauffer, “Scaling theory of percolation clusters”, Phys. Rep., 54:1 (1979), 1–74 | DOI

[44] J. W. Essam, “Percolation theory”, Rep. Prog. Phys., 43:7 (1980), 833–912 | DOI | MR

[45] E. K. Riedel, “The potts and cubic models in two dimensions: a renormalization-group description”, Phys. A, 106:1-2 (1981), 110–121 | DOI | MR

[46] S. A. Trugman, “Localization, percolation, and the quantum Hall effect”, Phys. Rev. B, 27:12 (1983), 7539–7546 | DOI

[47] S. P. Novikov, “Levels of quasiperiodic functions on a plane, and Hamiltonian systems”, Uspekhi Mat. Nauk, 54:5(329) (1999), 147–148 ; English transl. in Russian Math. Surveys, 54:5 (1999), 1031–1032 | DOI | MR | Zbl | DOI

[48] I. A. Dynnikov and S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Uspekhi Mat. Nauk, 60:1(361) (2005), 3–28 ; English transl. in Russian Math. Surveys, 60:1 (2005), 1–26 | DOI | MR | Zbl | DOI

[49] A. Ya. Maltsev and S. P. Novikov, Dynamical systems, topology, and conductivity in normal metals, 2003, 51 pp., arXiv: cond-mat/0312708

[50] A. Ya. Maltsev and S. P. Novikov, “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bull. Braz. Math. Soc. (N. S.), 34:1 (2003), 171–210 | DOI | MR | Zbl

[51] A. Ya. Maltsev and S. P. Novikov, “Dynamical systems, topology and conductivity in normal metals”, J. Statist. Phys., 115:1-2 (2004), 31–46 | DOI | MR | Zbl

[52] C. Kittel, Quantum theory of solids, John Wiley Sons, Inc., New York–London, 1964, xii+435 pp. | Zbl

[53] J. M. Ziman, Principles of the theory of solids, Cambridge Univ. Press, New York, 1964, xiii+360 pp. | MR | Zbl

[54] A. A. Abrikosov, Fundamentals of the Theory of Metals, Nauka, Moscow, 1987, 520 pp.; English transl. Reprinted edition, Dover Publications, Inc., New York, 2017, 640 pp.

[55] R. De Leo, “A survey on quasiperiodic topology”, Advanced mathematical methods in biosciences and applications, STEAM-H: Sci. Technol. Eng. Agric. Math. Health, Springer, Cham, 2019, 53–88 | DOI | MR | Zbl

[56] R. De Leo, “Topological effects in the magnetoresistance of Au and Ag”, Phys. Lett. A, 332:5-6 (2004), 469–474 | DOI | Zbl

[57] R. De Leo, “First-principles generation of stereographic maps for high-field magnetoresistance in normal metals: an application to Au and Ag”, Phys. B, 362:1-4 (2005), 62–75 | DOI

[58] A. Ya. Maltsev, “On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface”, Zh. Èksper. Teoret. Fiz., 151:5 (2017), 944–973; English transl. in JETP, 124:5 (2017), 805–831 | DOI

[59] A. Ya. Maltsev, “Oscillation phenomena and experimental determination of exact mathematical stability zones for magneto-conductivity in metals having complicated Fermi surfaces”, Zh. Èksper. Teoret. Fiz., 152:5 (2017), 1053–1064 ; English transl. in JETP, 125:5 (2017), 896–905 | DOI | DOI

[60] A. Ya. Maltsev, “The second boundaries of stability zones and the angular diagrams of conductivity for metals having complicated Fermi surfaces”, Zh. Èksper. Teoret. Fiz., 154:6 (2018), 1183–1210 ; English transl. in JETP, 127:6 (2018), 1087–1111 | DOI | DOI