@article{RM_2022_77_6_a2,
author = {P. G. Grinevich and P. M. Santini},
title = {The finite-gap method and the periodic {Cauchy} problem for $(2+1)$-dimensional anomalous waves for the focusing {Davey{\textendash}Stewartson} $2$ equation},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1029--1059},
year = {2022},
volume = {77},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a2/}
}
TY - JOUR AU - P. G. Grinevich AU - P. M. Santini TI - The finite-gap method and the periodic Cauchy problem for $(2+1)$-dimensional anomalous waves for the focusing Davey–Stewartson $2$ equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 1029 EP - 1059 VL - 77 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a2/ LA - en ID - RM_2022_77_6_a2 ER -
%0 Journal Article %A P. G. Grinevich %A P. M. Santini %T The finite-gap method and the periodic Cauchy problem for $(2+1)$-dimensional anomalous waves for the focusing Davey–Stewartson $2$ equation %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 1029-1059 %V 77 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a2/ %G en %F RM_2022_77_6_a2
P. G. Grinevich; P. M. Santini. The finite-gap method and the periodic Cauchy problem for $(2+1)$-dimensional anomalous waves for the focusing Davey–Stewartson $2$ equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 1029-1059. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a2/
[1] M. J. Ablowitz, G. Biondini, and S. Blair, “Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials”, Phys. Rev. E (3), 63:4 (2001), 046605 | DOI
[2] M. J. Ablowitz and R. Haberman, “Nonlinear evolution equations – two and three dimensions”, Phys. Rev. Lett., 35:18 (1975), 1185–1188 | DOI | MR
[3] M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, SIAM Stud. Appl. Math., 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1981, x+425 pp. | DOI | MR | Zbl
[4] N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves”, J. Opt., 15:6 (2013), 060201, 9 pp. | DOI
[5] N. N. Akhmediev, V. M. Eleonskiĭ, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions”, Zh. Èksper. Teoret. Fiz., 89:5 (1985), 1542–1551 ; English transl. in Soviet Phys. JETP, 62:5 (1985), 894–899
[6] D. Anker and N. C. Freeman, “On the soliton solutions of the Davey–Stewartson equation for long waves”, Proc. Roy. Soc. London Ser. A, 360:1703 (1978), 529–540 | DOI | MR | Zbl
[7] H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions”, Phys. Rev. Lett., 107:25 (2011), 255005 | DOI
[8] F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, and S. Wabnitz, “Vector rogue waves and baseband modulation instability in the defocusing regime”, Phys. Rev. Lett., 113:3 (2014), 034101, 5 pp. | DOI
[9] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, and V. B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1994, xii+337 pp. | Zbl
[10] T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water. Part I. Theory”, J. Fluid Mech., 27 (1967), 417–430 | DOI | Zbl
[11] D. J. Benney and G. J. Roskes, “Wave instabilities”, Stud. Appl. Math., 48:4 (1969), 377–385 | DOI | Zbl
[12] V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids”, Pis'ma Zh. Èksper. Teoret. Fiz., 3:12 (1966), 471–476; English transl. in JETP Lett., 3:12 (1966), 307–310
[13] Yu. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves”, Phys. Rev. A, 80:3 (2009), 033610 | DOI
[14] M. Boiti, J. J.-P. Leon, L. Martina, and F. Pempinelli, “Scattering of localized solitons in the plane”, Phys. Lett. A, 132:8-9 (1988), 432–439 | DOI | MR
[15] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502 | DOI
[16] I. V. Cherednik, “Reality conditions in ‘finite-zone integration’”, Dokl. Akad. Nauk SSSR, 252:5 (1980), 1104–1108 ; English transl. in Soviet Phys. Dokl., 25:6 (1980), 450–452 | MR | Zbl
[17] F. Coppini, P. G. Grinevich, and P. M. Santini, “Effect of a small loss or gain in the periodic nonlinear Schrödinger anomalous wave dynamics”, Phys. Rev. E, 101:3 (2020), 032204, 8 pp. | DOI | MR
[18] F. Coppini, P. G. Grinevich, and P. M. Santini, “Periodic rogue waves and perturbation theory”, Encyclopedia of complexity and systems science, Springer, Berlin–Heidelberg, 2022, 1–22, Publ. online | DOI
[19] F. Coppini and P. M. Santini, “The Fermi–Pasta–Ulam–Tsingou recurrence of periodic anomalous waves in the complex Ginzburg–Landau and in the Lugiato–Lefever equations”, Phys. Rev. E, 102:6 (2020), 062207, 11 pp. | DOI | MR
[20] A. Davey and K. Stewartson, “On three-dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A, 338:1613 (1974), 101–110 | DOI | MR | Zbl
[21] G. Dematteis, T. Grafke, M. Onorato, and E. Vanden-Eijnden, “Experimental evidence of hydrodynamic instantons: the universal route to rogue waves”, Phys. Rev. X, 9 (2019), 041057, 12 pp. | DOI
[22] B. A. Dubrovin, “Theta functions and non-linear equations”, Uspekhi Mat. Nauk, 36:2(218) (1981), 11–80 ; English transl. in Russian Math. Surveys, 36:2 (1981), 11–92 | MR | Zbl | DOI
[23] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Dokl. Akad. Nauk SSSR, 229:1 (1976), 15–18 ; English transl. in Soviet Math. Dokl., 17 (1977), 947–951 | MR | Zbl
[24] K. B. Dysthe and K. Trulsen, “Note on breather type solutions of the NLS as models for freak-waves”, Phys. Scr., T82:1 (1999), 48–52 | DOI
[25] G. A. El, “Soliton gas in integrable dispersive hydrodynamics”, J. Stat. Mech. Theory Exp., 2021, no. 11, 114001, 69 pp. | DOI | MR | Zbl
[26] G. A. El and A. Tobvis, “Spectral theory of soliton and breather gases for the focusing nonlinear Schrödinger equation”, Phys. Rev. E, 101:5 (2020), 052207, 21 pp. | DOI | MR
[27] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp. | DOI | MR | Zbl
[28] F. Fedele, J. Brennan, S. Ponce de León, J. Dudley, and F. Dias, “Real world ocean rogue waves explained without the modulational instability”, Sci. Rep., 6 (2016), 27715 | DOI
[29] A. S. Fokas and P. M. Santini, “Coherent structures in multidimensions”, Phys. Rev. Lett., 63:13 (1989), 1329–1333 | DOI | MR
[30] A. S. Fokas and P. M. Santini, “Dromions and a boundary value problem for the Davey–Stewartson 1 equation”, Phys. D, 44:1-2 (1990), 99–130 | DOI | MR | Zbl
[31] A. Gelash, D. Agafontsev, V. Zakharov, G. El, S. Randoux, and P. Suret, “Bound state soliton gas dynamics underlying the spontaneous modulational instability”, Phys. Rev. Lett., 123:23 (2019), 234102 | DOI
[32] P. G. Grinevich, A. E. Mironov, and S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for SPIN-$1/2$ particles”, Teor. Mat. Fiz., 164:3 (2010), 333–353 ; “Erratum”, 166:2 (2011), 320 ; English transl. in Theoret. and Math. Phys., 164:3 (2010), 1110–1127 ; 166:2 (2011), 278 | DOI | Zbl | DOI | DOI | DOI
[33] P. G. Grinevich and P. M. Santini, “The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1”, Nonlinearity, 31:11 (2018), 5258–5308 | DOI | MR
[34] P. G. Grinevich and P. M. Santini, “The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes”, Phys. Lett. A, 382:14 (2018), 973–979 | DOI | MR | Zbl
[35] P. G. Grinevich and P. M. Santini, “The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes”, Uspekhi Mat. Nauk, 74:2(446) (2019), 27–80 ; English transl. in Russian Math. Surveys, 74:2 (2019), 211–263 | DOI | MR | Zbl | DOI
[36] S. Haver, Freak wave event at Draupner jacket January 1 1995, Tech. Rep. PTT-KU-MA, Statoil, Oslo, 2003
[37] K. L. Henderson, D. H. Peregrine, and J. W. Dold, “Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation”, Wave Motion, 29:4 (1999), 341–361 | DOI | MR | Zbl
[38] G. Huang, L. Deng, and C. Hang, “Davey–Stewartson description of two-dimensional nonlinear excitations in Bose–Einstein condensates”, Phys. Rev. E, 72:3 (2005), 036621 | DOI
[39] A. R. Its, A. V. Rybin, and M. A. Sall, “Exact integration of nonlinear Schrödinger equation”, Teor. Mat. Fiz., 74:1 (1988), 29–45 ; English transl. in Theoret. and Math. Phys., 74:1 (1988), 20–32 | MR | Zbl | DOI
[40] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nature Phys., 6:10 (2010), 790–795 | DOI
[41] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Diaz, and J. M. Dudley, “Observation of Kuznetsov–Ma soliton dynamics in optical fibre”, Sci. Rep., 2 (2012), 463, 5 pp. | DOI
[42] Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications”, Phys. Rep., 298:2-3 (1998), 81–197 | DOI
[43] C. Klein and K. Roidot, “Numerical study of the semiclassical limit of the Davey–Stewartson II equations”, Nonlinearity, 27:9 (2014), 2177–2214 | DOI | MR
[44] C. Klein and J.-C. Saut, “IST versus PDE: a comparative study”, Hamiltonian partial differential equations and applications, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 383–449 | DOI | MR | Zbl
[45] C. Klein and N. Stoilov, “Numerical study of blow-up mechanisms for Davey–Stewartson II systems”, Stud. Appl. Math., 141:1 (2018), 89–112 | DOI | MR | Zbl
[46] B. G. Konopelchenko, “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96:1 (1996), 9–51 | DOI | MR | Zbl
[47] B. G. Konopelchenko, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl
[48] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Uspekhi Mat. Nauk, 44:2(266) (1989), 121–184 ; English transl. in Russian Math. Surveys, 44:2 (1989), 145–225 | MR | Zbl | DOI
[49] I. M. Krichever, Perturbation theory in periodic problems for two-dimensional integrable systems, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 9, Part 2, Harwood Acad. Publ., Reading, UK, 1992, 103 pp. | Zbl
[50] E. A. Kuznetsov, “Solitons in a parametrically unstable plasma”, Dokl. Akad. Nauk SSSR, 236:3 (1977), 575–577 ; English transl. in Soviet Phys. Dokl., 22 (1977), 507–508
[51] C. Liu, R. E. C. van der Wel, N. Rotenberg, L. Kuipers, T. F. Krauss, A. Di Falco, and A. Fratalocchi, “Triggering extreme events at the nanoscale in photonic seas”, Nature Phys., 11:4 (2015), 358–363 | DOI
[52] C. Liu, C. Wang, Z. Dai, and J. Liu, “New rational homoclinic and rogue waves for Davey–Stewartson equation”, Abstr. Appl. Anal., 2014 (2014), 572863, 8 pp. | DOI | MR | Zbl
[53] Y. Liu, C. Qian, D. Mihalache, and J. He, “Rogue waves and hybrid solutions of the Davey–Stewartson I equation”, Nonlinear Dynam., 95:1 (2019), 839–857 | DOI | Zbl
[54] R. M. Matuev and I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space”, Mat. Zametki, 100:6 (2016), 868–880 ; English transl. in Math. Notes, 100 (2016), 835–846 | DOI | MR | Zbl | DOI
[55] W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, “Dust-acoustic rogue waves in a nonextensive plasma”, Phys. Rev. E, 84:6 (2011), 066402 | DOI
[56] D. Mumford, Tata lectures on theta, v. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 pp. ; v. II, 43, 1984, xiv+272 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[57] A. C. Newell and J. V. Moloney, Nonlinear optics, Adv. Top. Interdiscip. Math. Sci., Addison-Wesley Publishing Co., Redwood City, CA, 1992, xii+436 pp. | MR | Zbl
[58] K. Nishinari, K. Abe, and J. Satsuma, “A new type of soliton behavior of the Davey–Stewartson equations in a plasma system”, Teor. Mat. Fiz., 99:3 (1994), 487–498 ; English transl. in Theoret. and Math. Phys., 99:3 (1994), 745–753 | MR | Zbl | DOI
[59] Y. Ohta and Jianke Yang, “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604 | DOI
[60] Y. Ohta and Jianke Yang, “Dynamics of rogue waves in the Davey–Stewartson II equation”, J. Phys. A, 46:10 (2013), 105202, 19 pp. | DOI | MR | Zbl
[61] M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, and K. Trulsen, “Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events”, Phys. Rev. Lett., 102:11 (2009), 114502 | DOI
[62] A. R. Osborne, M. Onorato, and M. Serio, “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains”, Phys. Lett. A, 275:5-6 (2000), 386–393 | DOI | MR | Zbl
[63] T. Ozawa, “Exact blow-up solutions to the Cauchy problem for the Davey–Stewartson systems”, Proc. Roy. Soc. London Ser. A, 436:1897 (1992), 345–349 | DOI | MR | Zbl
[64] F. Pedit and U. Pinkall, “Quaternionic analysis on Riemann surfaces and differential geometry”, Proceedings of the international congress of mathematicians, Vol. II (Berlin 1998), Doc. Math., Extra Vol. II (1998), 389–400 | MR | Zbl
[65] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl
[66] D. Pierangeli, M. Flammini, L. Zhang, G. Marcucci, A. J. Agranat, P. G. Grinevich, P. M. Santini, C. Conti, and E. DelRe, “Observation of Fermi–Pasta–Ulam–Tsingou recurrence and its exact dynamics”, Phys. Rev. X, 8:4 (2018), 041017, 9 pp. | DOI
[67] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057 | DOI
[68] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 133–151 | DOI | MR | Zbl
[69] I. A. Taimanov, “The global Weierstrass representation and its spectrum”, Uspekhi Mat. Nauk, 52:6(318) (1997), 187–188 ; English transl. in Russian Math. Surveys, 52:6 (1997), 1330–1332 | DOI | MR | Zbl | DOI
[70] I. A. Taimanov, “The Weierstrass representation of closed surfaces in $\mathbb R^3$”, Funktsional. Anal. Prilozhen., 32:4 (1998), 49–62 ; English transl. in Funct. Anal. Appl., 32:4 (1998), 258–267 | DOI | MR | Zbl | DOI
[71] I. A. Taimanov, “On two-dimensional finite-gap potential Schrödinger and Dirac operators with singular spectral curves”, Sibirsk. Mat. Zh., 44:4 (2003), 870–882 ; English transl. in Siberian Math. J., 44:4 (2003), 686–694 | MR | Zbl | DOI
[72] I. A. Taimanov, “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256 | DOI | MR | Zbl
[73] I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Uspekhi Mat. Nauk, 61:1(367) (2006), 85–164 ; English transl. in Russian Math. Surveys, 61:1 (2006), 79–159 | DOI | MR | Zbl | DOI
[74] I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Uspekhi Mat. Nauk, 66:1(397) (2011), 111–150 ; English transl. in Russian Math. Surveys, 66:1 (2011), 107–144 | DOI | MR | Zbl | DOI
[75] I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry”, Mat. Zametki, 97:1 (2015), 129–141 ; English transl. in Math. Notes, 97:1 (2015), 124–135 | DOI | MR | Zbl | DOI
[76] I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Teor. Mat. Fiz., 182:2 (2015), 213–222 ; English transl. in Theoret. and Math. Phys., 182:2 (2015), 173–181 | DOI | MR | Zbl | DOI
[77] I. A. Taimanov, “The Moutard transformation for the Davey–Stewartson II equation and its geometrical meaning”, Mat. Zametki, 110:5 (2021), 751–765 ; English transl. in Math. Notes, 110:5 (2021), 754–766 | DOI | MR | Zbl | DOI
[78] I. A. Taimanov and S. P. Tsar{e}v, “Blowing up solutions of the Novikov–Veselov equation”, Dokl. Ross. Akad. Nauk, 420:6 (2008), 744–745 ; English transl. in Dokl. Math., 77:3 (2008), 467–468 | MR | Zbl | DOI
[79] A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations”, Dokl. Akad. Nauk SSSR, 279:1 (1984), 20–24 ; English transl. in Soviet Math. Dokl., 30:3 (1984), 588–591 | MR | Zbl
[80] A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators”, Dokl. Akad. Nauk SSSR, 279:4 (1984), 784–788 ; English transl. in Soviet Math. Dokl., 30:3 (1984), 705–708 | MR | Zbl
[81] L. Wen, L. Li, Z. D. Li, S. W. Song, X. F. Zhang, and W. M. Liu, “Matter rogue wave in Bose–Einstein condensates with attractive atomic interaction”, Eur. Phys. J. D, 64 (2011), 473–478 | DOI
[82] V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, Prikl. Mekh. Tekhn. Fiz., 1968, no. 2, 86–94; English transl. in J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI
[83] V. E. Zakharov and A. A. Gelash, “Nonlinear stage of modulation instability”, Phys. Rev. Lett., 111:5 (2013), 054101 | DOI
[84] V. E. Zakharov and A. M. Rubenchik, “Nonlinear interaction of high-frequency and low-frequency waves”, Prikl. Mekh. Tekhn. Fiz., 1972, no. 5, 84–98; English transl. in J. Appl. Mech. Tech. Phys., 13:5 (1972), 669–681 | DOI
[85] V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Zh. Èksper. Teoret. Fiz., 61:1 (1971), 118–134 ; English transl. in Soviet Phys. JETP, 34:1 (1972), 62–69 | MR
[86] V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funktsional. Anal. Prilozhen., 8:3 (1974), 43–53 ; English transl. in Funct. Anal. Appl., 8:3 (1974), 226–235 | MR | Zbl | DOI