Mots-clés : domain of univalence, coefficient regions
@article{RM_2022_77_6_a0,
author = {V. V. Goryainov and O. S. Kudryavtseva and A. P. Solodov},
title = {Iterates of holomorphic maps, fixed points, and domains of univalence},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {959--1020},
year = {2022},
volume = {77},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_6_a0/}
}
TY - JOUR AU - V. V. Goryainov AU - O. S. Kudryavtseva AU - A. P. Solodov TI - Iterates of holomorphic maps, fixed points, and domains of univalence JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 959 EP - 1020 VL - 77 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_6_a0/ LA - en ID - RM_2022_77_6_a0 ER -
%0 Journal Article %A V. V. Goryainov %A O. S. Kudryavtseva %A A. P. Solodov %T Iterates of holomorphic maps, fixed points, and domains of univalence %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 959-1020 %V 77 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2022_77_6_a0/ %G en %F RM_2022_77_6_a0
V. V. Goryainov; O. S. Kudryavtseva; A. P. Solodov. Iterates of holomorphic maps, fixed points, and domains of univalence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 6, pp. 959-1020. http://geodesic.mathdoc.fr/item/RM_2022_77_6_a0/
[1] J. Dieudonné, “Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d'une variable complexe”, Ann. Sci. École Norm. Sup. (3), 48 (1931), 247–358 | DOI | MR | Zbl
[2] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[3] H. Unkelbach, “Über die Randverzerrung bei konformer Abbildung”, Math. Z., 43:1 (1938), 739–742 | DOI | MR | Zbl
[4] R. Osserman, “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR | Zbl
[5] O. Kudryavtseva and A. Solodov, “On the boundary Dieudonné–Pick lemma”, Mathematics, 9:10 (2021), 1108, 9 pp. | DOI
[6] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Mat. Sb., 208:3 (2017), 54–71 ; English transl. in Sb. Math., 208:3 (2017), 360–376 | DOI | MR | Zbl | DOI
[7] H. Yanagihara, “On the locally univalent Bloch constant”, J. Anal. Math., 65 (1995), 1–17 | DOI | MR | Zbl
[8] P. R. Mercer, “An improved Schwarz lemma at the boundary”, Open Math., 16:1 (2018), 1140–1144 | DOI | MR | Zbl
[9] F. G. Avkhadiev and L. A. Aksent'ev, “The main results on sufficient conditions for an analytic function to be schlicht”, Uspekhi Mat. Nauk, 30:4(184) (1975), 3–60 ; Enlish transl. in Russian Math. Surveys, 30:4 (1975), 1–63 | MR | Zbl | DOI
[10] G. V. Kuz'mina, “Numerical determination of radii of univalence of analytic functions”, Papers on approximate analysis, Tr. Mat. Ist. Steklova, 53, Publishing house of the USSR Academy of Sciences, Moscow–Leningrad, 1959, 192–235 (Russian) | MR | Zbl
[11] K. Noshiro, “On the theory of schlicht functions”, J. Fac. Sci. Hokkaido Imp. Univ. Ser. I, 2:3 (1934), 129–155 | DOI | Zbl
[12] S. E. Warschawski, “On the higher derivatives at the boundary in conformal mapping”, Trans. Amer. Math. Soc., 38:2 (1935), 310–340 | DOI | MR | Zbl
[13] E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, v. II, Konforme Abbildung einfach zusammenhängender Bereiche, B. G. Teubner, Leipzig–Berlin, 1913, iv+142 pp. | Zbl
[14] J. W. Alexander, “Functions which map the interior of the unit circle upon simple regions”, Ann. of Math. (2), 17:1 (1915), 12–22 | DOI | MR | Zbl
[15] P. T. Mocanu, “Two simple sufficient conditions for starlikeness”, Mathematica (Cluj), 34(57):2 (1992), 175–181 | MR | Zbl
[16] S. Ponnusamy and V. Singh, “Criteria for strongly starlike functions”, Complex Variables Theory Appl., 34:3 (1997), 267–291 | DOI | MR | Zbl
[17] M. Obradović, “Simple sufficient conditions for univalence”, Mat. Vesnik, 49:3-4 (1997), 241–244 | MR | Zbl
[18] L. Špaček, “Prispevek k teorii funkci prostych [Contribution à la théorie des fonctions univalentes]”, Časopis Pěst. Mat. Fys., 62 (1932), 12–19 | Zbl
[19] W. Kaplan, “Close-to-convex schlicht functions”, Michigan Math. J., 1:2 (1952), 169–185 | DOI | MR | Zbl
[20] R. Nevanlinna, “Über die schlichten Abbildungen des Einheitskreises”, Översikt av Finska Vet. Soc. Förh., 62 (A) (1920), 7, 14 pp. | Zbl
[21] H. Grunsky, “Zwei Bemerkungen zur konformen Abbildung”, Jahresber. Deutsch. Math.-Verein., 43 (1934), 140–143 | Zbl
[22] V. V. Goryainov and V. Ya. Gutlyanskii, “The radius of starlikeness for conformal mappingsСЏ”, Dopovid. Akad. Nauk Ukrain RSR Ser. A, 1974 (1974), 100–102 (Ukrainian) | MR | Zbl
[23] V. V. Goryainov, Value domains of certain functionals and geometric properties of a conformal mapping, PhD Thesis, Kuban' State University, Krasnodar, 1975, 104 pp. (Russian)
[24] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | DOI | MR | Zbl
[25] V. N. Dubinin, “Geometric estimates for the Schwarzian derivative”, Uspeki Mat. Nauk, 72:3(435) (2017), 97–130 ; English transl. in Russian Math. Surveys, 72:3 (2017), 479–511 | DOI | MR | Zbl | DOI
[26] V. N. Dubinin, “Schwarzian derivative and covering arcs of a pencil of circles by holomorphic functions”, Mat. Zametki, 98:6 (2015), 865–871 ; English transl. in Math. Notes, 98:6 (2015), 920–925 | DOI | MR | Zbl | DOI
[27] W. Kraus, “Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Sem. Univ. Giessen, 21 (1932), 1–28 | Zbl
[28] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl
[29] E. Hille, “Remarks on a paper by Zeev Nehari”, Bull. Amer. Math. Soc., 55:6 (1949), 552–553 | DOI | MR | Zbl
[30] Z. Nehari, “Some criteria of univalence”, Proc. Amer. Math. Soc., 5 (1954), 700–704 | DOI | MR | Zbl
[31] V. V. Pokornyi, “Some sufficient conditions of univalence”, Dokl. Akad. Nauk SSSR, 79:5 (1951), 743–746 (Russian) | MR | Zbl
[32] G. M. Goluzin, Geometric theory of functions of a complex variable, 2nd ed., Nauka, Moscow, 1966, 628 pp. ; English transl. Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | Zbl | MR | Zbl
[33] Ch. Pommerenke, Univalent functions, Studia Math./Math. Lehrbücher, 25, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl
[34] P. L. Duren, H. S. Shapiro, and A. L. Shields, “Singular measures and domains not of Smirnov type”, Duke Math. J., 33:2 (1966), 247–254 | DOI | MR | Zbl
[35] J. Becker, “Löwnersche Differentlialgleichung und quasikonform fortsetzbare schlichte Funktionen”, J. Reine Angew. Math., 1972:255 (1972), 23–43 | DOI | MR | Zbl
[36] J. Becker and Ch. Pommerenke, “Schlichtheitskriterien und Jordangebiete”, J. Reine Angew. Math., 1984:354 (1984), 74–94 | DOI | MR | Zbl
[37] O. A. Busovskaya and V. V. Goryainov, “Homeomorphic continuation of spiral functions”, Ukrain. Mat. Zh., 33:5 (1981), 656–660 ; English transl. in Ukrainian Math. J., 33:5 (1981), 501–504 | MR | Zbl | DOI
[38] P. Koebe, “Über die Uniformisierung der algebraischen Kurven. II”, Math. Ann., 69:1 (1910), 1–81 | DOI | MR | Zbl
[39] L. Bieberbach, “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln”, Sitzungsber Preuß. Akad. Wiss., Phys.-Math. Kl., 138 (1916), 940–955 | Zbl
[40] A. Bloch, “Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), 17 (1925), 1–22 | DOI | MR | Zbl
[41] L. V. Ahlfors, “An extension of Schwarz's lemma”, Trans. Amer. Math. Soc., 43:3 (1938), 359–364 | DOI | MR | Zbl
[42] M. Heins, “On a class of conformal metrics”, Nagoya Math. J., 21 (1962), 1–60 | DOI | MR | Zbl
[43] M. Bonk, “On Bloch's constant”, Proc. Amer. Math. Soc., 110:4 (1990), 889–894 | DOI | MR | Zbl
[44] H. Chen and P. M. Gauthier, “On Bloch's constant”, J. Anal. Math., 69 (1996), 275–291 | DOI | MR | Zbl
[45] L. V. Ahlfors and H. Grunsky, “Über die Blochsche Konstante”, Math. Z., 42:1 (1937), 671–673 | DOI | MR | Zbl
[46] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl
[47] M. Tsuji, Potential theory in modern function theory, Reprint of the 1959 original, Chelsea Publishing Co., New York, 1975, x+590 pp. | MR | Zbl
[48] P. Cacridis-Theodorakopulos, “Über die untere Grenze der Rundungsschranken der beschränkten Funktionen $f(z)$, deren $|f'(0)|$ Vorgegebenen ist”, Math. Ann., 113:1 (1937), 657–664 | DOI | MR | Zbl
[49] G. Pick, “Über den Koebeschen Verzerrungssatz”, Ber. Verh. sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl., 68 (1916), 58–64 | Zbl
[50] O. S. Kudryavtseva and A. P. Solodov, “Generalization of the Landau and Becker–Pommerenke inequalities”, Dokl. Ross. Akad. Nauk. Mat. Inform. Proteassy Upr., 505:4 (2022), 46–49 ; English transl. in Dokl. Math., 106:1 (2022), 251–253 | DOI | Zbl | DOI | MR
[51] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1-2 (1923), 103–121 | DOI | MR | Zbl
[52] O. S. Kudryavtseva and A. P. Solodov, “Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter”, Mat. Sbornik, 211:11 (2020), 96–117 ; English transl. in Sb. Math., 211:11 (2020), 1592–1611 | DOI | MR | Zbl | DOI
[53] G. Valiron, Fonctions analytiques, Presses Univ. de France, Paris, 1954, 236 pp. | MR | Zbl
[54] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl
[55] I. N. Baker and Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. II”, J. London Math. Soc. (2), 20:2 (1979), 255–258 | DOI | MR | Zbl
[56] J. Becker and Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl
[57] O. S. Kudryavtseva and A. P. Solodov, “Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points”, Mat. Sb., 210:7 (2019), 120–144 ; English transl. in Sb. Math., 210:7 (2019), 1019–1042 | DOI | MR | Zbl | DOI
[58] A. P. Solodov, “The exact domain of univalence on the class of holomorphic maps of a disc into itself with an interior and a boundary fixed points”, Izv. Ross. Akad. Nauk Ser. Mat., 85:5 (2021), 190–218 ; English transl. in Izv. Math., 85:5 (2021), 1008–1035 | DOI | MR | Zbl | DOI
[59] O. S. Kudryavtseva and A. P. Solodov, “Inverse function theorem on the class of holomorphic self-maps of a disc with two fixed points”, Uspekhi Mat. Nauk, 77:1(463) (2022), 187–188 ; English transl. in Russian Math. Surveys, 77:1 (2022), 177–179 | DOI | MR | Zbl | DOI
[60] V. V. Goryainov, “Holomorphic mappings of a strip into itself with bounded distortion at infinity”, Complex analysis and its applcations, Tr. Mat. Inst. Steklova, 298, MAIK Nauka/Interperiodika, Moscow, 2017, 101–111 ; English transl. in Proc. Steklov Inst. Math., 298 (2017), 94–103 | DOI | MR | Zbl | DOI
[61] E. Schröder, “Ueber iterirte Functionen”, Math. Ann., 3:2 (1870), 296–322 | DOI | MR | Zbl
[62] G. Koenigs, “Recherches sur les intégrales de certaines équations fonctionelles”, Ann. Sci. École Norm. Sup. (3), 1 (1884), 3–41 | DOI | MR | Zbl
[63] I. N. Baker, “Fractional iteration near a fixpoint of multiplier 1”, J. Austral. Math. Soc., 4:2 (1964), 143–148 | DOI | MR | Zbl
[64] S. Karlin and J. McGregor, “Embedding iterates of analytic functions with two fixed points into continuous groups”, Trans. Amer. Math. Soc., 132:1 (1968), 137–145 | DOI | MR | Zbl
[65] E. Berkson and H. Porta, “Semigroups of analytic functions and composition operators”, Michigan Math. J., 25:1 (1978), 101–115 | DOI | MR | Zbl
[66] V. V. Goryainov, “One-parameter semigroups of analytic functions and a compositional analogue of infinite divisibility”, Tr. Inst. Prikl. Mat. Mekh., 5, Institute of Applied Mathematics and Mechanics. National Academy of Sciences of Ukraine, Donetsk, 2000, 44–57 (Russian) | MR | Zbl
[67] A. Denjoy, “Sur l'itération des fonctions analytiques”, C. R. Acad. Sci. Paris, 182 (1926), 255–257 | Zbl
[68] J. Wolff, “Sur l'itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette région”, C. R. Acad. Sci. Paris, 182 (1926), 42–43 | Zbl
[69] J. Wolff, “Sur l'itération des fonctions bornées”, C. R. Acad. Sci. Paris, 182 (1926), 200–201 | Zbl
[70] V. V. Goryaĭnov, “Fractional iterates of functions analytic in the unit disk, with given fixed points”, Mat. Sb., 182:9 (1991), 1281–1299 ; English transl. in Sb. Math., 74:1 (1993), 29–46 | MR | Zbl | DOI
[71] D. Shoikhet, “Representations of holomorphic generators and distortion theorems for spirallike functions with respect to a boundary point”, Int. J. Pure Appl. Math., 5:3 (2003), 335–361 | MR | Zbl
[72] M. D. Contreras, S. Díaz-Madrigal, and Ch. Pommerenke, “On boundary critical points for semigroups of analytic functions”, Math. Scand., 98:1 (2006), 125–142 | DOI | MR | Zbl
[73] F. Bracci, M. D. Contreras, and S. Díaz-Madrigal, “Aleksandrov–Clark measures and semigroups of analytic functions in the unit disc”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 231–240 | MR | Zbl
[74] V. V. Goryainov and O. S. Kudryavtseva, “One-parameter semigroups of analytic functions, fixed points and the Koenigs function”, Mat. Sb., 202:7 (2011), 43–74 ; English transl. in Sb. Math., 202:7 (2011), 971–1000 | DOI | MR | Zbl | DOI
[75] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Uspekhi Mat. Nauk, 67:6(408) (2012), 5–52 ; English transl. in Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | MR | Zbl | DOI
[76] M. Elin, V. Goryainov, S. Reich, and D. Shoikhet, “Fractional iteration and functional equations for analytic in the unit disk”, Comput. Methods Funct. Theory, 2:2 (2002), 353–366 | DOI | MR | Zbl
[77] T. E. Harris, “Some mathematical models for branching processes”, Proceedings of the 2nd Berkeley symposium on mathematical statistics and probability (1950), Univ. of California Press, Berkeley–Los Angeles, CA, 1951, 305–328 | MR | Zbl
[78] T. E. Harris, The theory of branching processes, Grundlehren Math. Wiss., 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., 1963, xiv+230 pp. | MR | Zbl
[79] S. Karlin and J. McGregor, “Embeddability of discrete time simple branching processes into continuous time branching processes”, Trans. Amer. Math. Soc., 132:1 (1968), 115–136 | DOI | MR | Zbl
[80] V. V. Goryaĭnov, “Fractional iteration of probability generating functions and imbedding discrete branching processes in continuous processes”, Mat. Sb., 184:5 (1993), 55–74 ; English transl. in Sb. Math., 79:1 (1994), 47–61 | MR | Zbl | DOI
[81] V. V. Goryaĭnov, “Semigroups of probability generating functions, and infinitely splittable random variables”, Theory Stoch. Process., 1(17):1 (1995), 2–9 | Zbl
[82] V. V. Goryainov, “Koenigs function and fractional iterates of probability generating functions”, Mat. Sb., 193:7 (2002), 69–86 ; English transl. in Sb. Math., 193:7 (2002), 1009–1025 | DOI | MR | Zbl | DOI
[83] P. R. Garabedian and M. Schiffer, “A proof of the Bieberbach conjecture for the fourh coefficient”, J. Rational Mech. Anal., 4:3 (1955), 427–465 | DOI | MR | Zbl
[84] L. de Branges, A proof of the Bieberbach conjecture, Preprint LOMI E-5-84, Leningrad Branch of the V. A. Steklov Math. Inst., Leningrad, 1984, 21 pp.
[85] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1-2 (1985), 137–152 | DOI | MR | Zbl
[86] O. S. Kudryavtseva, “Fractional iterates of analytic functions with rational coefficients in the unit disc”, Vestn. Volgograd. Gos. Univ. Ser. 1 Mat. Mekh., 2011, no. 2(15), 50–62 (Russian)
[87] O. Tammi, Extremum problems for bounded univalent functions, Lecture Notes in Math., 646, Springer-Verlag, Berlin–New York, 1978, vii+313 pp. | DOI | MR | Zbl
[88] I. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 | DOI | MR | Zbl
[89] O. S. Kudryavtseva, “Schwarz's lemma and estimates of coefficients in the case of an arbitrary set of boundary fixed points”, Mat. Zametki, 109:4 (2021), 636–640 ; English transl. in Math. Notes, 109:4 (2021), 653–657 | DOI | MR | Zbl | DOI
[90] C. C. Cowen and Ch. Pommerenke, “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc. (2), 26:2 (1982), 271–289 | DOI | MR | Zbl