@article{RM_2022_77_5_a7,
author = {N. V. Smorodina and E. B. Yarovaya},
title = {Martingale method for studying branching random walks},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {955--957},
year = {2022},
volume = {77},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_5_a7/}
}
N. V. Smorodina; E. B. Yarovaya. Martingale method for studying branching random walks. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 5, pp. 955-957. http://geodesic.mathdoc.fr/item/RM_2022_77_5_a7/
[1] Iu. Makarova, D. Balashova, S. Molchanov, and E. Yarovaya, Mathematics, 10:6 (2022), 867, 45 pp. | DOI
[2] E. B. Yarovaya, Branching random woals in inhomogenous medium, Applied Research Centre at the Faculty ofMechanics and Mathematics of Moscow State University, Moscow, 2007, 104 pp. (Russian)
[3] J. D. Biggins, Ann. Probab., 20:1 (1992), 137–151 | DOI | MR | Zbl
[4] A. Joffe, Ann. Appl. Probab., 3:4 (1993), 1145–1150 | DOI | MR | Zbl
[5] K.-C. Chang, X. Wang, and X. Wu, Discrete Contin. Dyn. Syst., 40:6 (2020), 3171–3200 | DOI | MR | Zbl
[6] I. I. Gikhman and A. V. Skorokhod, Introduction to the theory of random processes, 2nd ed., Nauka, Moscow, 1977, 567 pp. ; English transl. of 1st ed. W. B. Saunders Co., Philadelphia, Pa.–London–Toronto, Ont., 1969, xiii+516 pp. | MR | Zbl | MR
[7] I. I. Khristolyubov amd E. B. Yarovaya, Teor. Veroyatn. Primen., 64:3 (2019), 456–480 ; English transl. in Theory Probab. Appl., 64:3 (2019), 365–384 | DOI | MR | Zbl | DOI