@article{RM_2022_77_5_a5,
author = {M. Bakuradze},
title = {Cohomological realization of the {Buchstaber} formal group law},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {949--951},
year = {2022},
volume = {77},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_5_a5/}
}
M. Bakuradze. Cohomological realization of the Buchstaber formal group law. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 5, pp. 949-951. http://geodesic.mathdoc.fr/item/RM_2022_77_5_a5/
[1] N. A. Baas, Math. Scand., 33 (1973), 279–302 | DOI | MR | Zbl
[2] M. Bakuradze, Uspekhi Mat. Nauk, 68:3(411) (2013), 189–190 ; English transl. in Russian Math. Surveys, 68:3 (2013), 571–573 | DOI | MR | Zbl | DOI
[3] M. Bakuradze, Algebraic topology, convex polytopes, and related questions, Tr. Mat. Inst. Steklova, 286, MAIK ‘Nauka/Interperiodika’, Moscow, 2014, 7–21 ; English transl. in Proc. Steklov Inst. Math., 286 (2014), 1–15 | DOI | MR | Zbl | DOI
[4] M. Bakuradze, Homol. Homotopy Appl. (to appear); Polynomial generators of $\operatorname{MSU}^*[1/2]$ related to classifying maps of certain formal group laws, 2022 (v1 – 2021), 13 pp., arXiv: 2107.01395
[5] V. M. Buchstaber and E. Yu. Netay, Uspekhi Mat. Nauk, 69:4(418) (2014), 181–182 ; English transl. in Russian Math. Surveys, 69:4 (2014), 757–759 | DOI | MR | Zbl | DOI
[6] V. M. Buchstaber and A. V. Ustinov, Mat. Sb., 206:11 (2015), 19–60 ; English transl. in Sb. Math., 206:11 (2015), 1524–1563 | DOI | MR | Zbl | DOI
[7] G. Höhn, Komplexe elliptische Geschlechter und $S^1$-aquivariante Kobordismustheorie, 2004, 84 pp., arXiv: math/0405232
[8] E. E. Kummer, J. Reine Angew. Math., 1852:44 (1852), 93–146 | DOI | MR | Zbl
[9] Z. Lü and T. Panov, Algebr. Geom. Topol., 16:5 (2016), 2865–2893 | DOI | MR | Zbl
[10] O. K. Mironov, Izv. Akad. Nauk SSSR Ser. Mat., 42:4 (1978), 789–806 ; English transl. in Izv. Math., 13:1 (1979), 89–106 | MR | Zbl | DOI
[11] S. P. Novikov, Mat. Sb., 57(99):4 (1962), 407–442 ; English transl. in Topological library. Part 1: Cobordisms and their applications, Ser. Knots Everything, 39, eds. S. P. Novikov and I. A. Taimanov, World Sci. Publ., Hackensack, NJ, 2007, 211–250 | MR | Zbl | DOI | MR | Zbl
[12] B. Totaro, Ann. of Math. (2), 151:2 (2000), 757–791 | DOI | MR | Zbl