Mots-clés : graph invariant
@article{RM_2022_77_5_a2,
author = {M. E. Kazarian and S. K. Lando},
title = {Weight systems and invariants of graphs and embedded graphs},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {893--942},
year = {2022},
volume = {77},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_5_a2/}
}
TY - JOUR AU - M. E. Kazarian AU - S. K. Lando TI - Weight systems and invariants of graphs and embedded graphs JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 893 EP - 942 VL - 77 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_5_a2/ LA - en ID - RM_2022_77_5_a2 ER -
M. E. Kazarian; S. K. Lando. Weight systems and invariants of graphs and embedded graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 5, pp. 893-942. http://geodesic.mathdoc.fr/item/RM_2022_77_5_a2/
[1] N. H. Abel, “Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist”, J. Reine Angew. Math., 1826:1 (1826), 159–160 | DOI | MR | Zbl
[2] M. Aguiar, N. Bergeron, and F. Sottile, “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compos. Math., 142:1 (2006), 1–30 | DOI | MR | Zbl
[3] M. Aguiar and S. Mahajan, “Hopf monoids in the category of species”, Hopf algebras and tensor categories, Contemp. Math., 585, Amer. Math. Soc., Providence, RI, 2013, 17–124 | DOI | MR | Zbl
[4] R. Arratia, B. Bollobás, and G. B. Sorkin, “A two-variable interlace polynomial”, Combinatorica, 24:4 (2004), 567–584 | DOI | MR | Zbl
[5] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl
[6] D. Bar-Natan and H. T. Vo, “Proof of a conjecture of Kulakova et al. related to the $\mathfrak{sl}_2$ weight system”, European J. Combin., 45 (2015), 65–70 | DOI | MR | Zbl
[7] A. Bigeni, “A generalization of the Kreweras triangle through the universal $\mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326 | DOI | MR | Zbl
[8] B. Bollobás and O. Riordan, “A polynomial of graphs on surfaces”, Math. Ann., 323:1 (2002), 81–96 | DOI | MR | Zbl
[9] A. Bouchet, “Maps and $\Delta$-matroids”, Discrete Math., 78:1-2 (1989), 59–71 | DOI | MR | Zbl
[10] A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144 | DOI | MR | Zbl
[11] A. Bouchet and A. Duchamp, “Representability of $\Delta$-matroids over $\mathbf{GF}(2)$”, Linear Algebra Appl., 146 (1991), 67–78 | DOI | MR | Zbl
[12] R. Brijder and H. J. Hoogeboom, “Interlace polynomials for multimatroids and delta-matroids”, European J. Combin., 40 (2014), 142–167 | DOI | MR | Zbl
[13] V. M. Buchstaber and N. Yu. Erokhovets, “Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions”, Uspekhi Mat. Nauk, 66:2(398) (2011), 67–162 ; English transl. in Russian Math. Surveys, 66:2 (2011), 271–367 | DOI | MR | Zbl | DOI
[14] B. S. Bychkov and A. V. Mikhailov, “Polynomial graph invariants and linear hierarchies”, Uspekhi Mat. Nauk, 74:2(446) (2019), 189–190 ; English transl. in Russian Math. Surveys, 74:2 (2019), 366–368 | DOI | MR | Zbl | DOI
[15] S. Chmutov, “Generalized duality for graphs on surfaces and the signed Bollobás–Riordan polynomial”, J. Combin. Theory Ser. B, 99:3 (2009), 617–638 | DOI | MR | Zbl
[16] S. V. Chmutov, S. V. Duzhin, and S. K. Lando, “Vassiliev knot invariants. III. Forest algebra and weighted graphs”, Singularities and bifurcations, Adv. Soviet Math., 21, Amer. Math. Soc., Providence, RI, 1994, 135–145 | DOI | MR | Zbl
[17] S. Chmutov, S. Duzhin, and J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp. | DOI | MR | Zbl
[18] S. Chmutov, M. Kazarian, and S. Lando, “Polynomial graph invariants and the KP hierarchy”, Selecta Math. (N. S.), 26:3 (2020), 34, 22 pp. | DOI | MR | Zbl
[19] S. V. Chmutov and S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598 | DOI | MR | Zbl
[20] S. V. Chmutov and A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $sl_2$”, Topology, 36:1 (1997), 153–178 | DOI | MR | Zbl
[21] C. Chun, I. Moffatt, S. D. Noble, and R. Rueckriemen, “On the interplay between embedded graphs and delta-matroids”, Proc. Lond. Math. Soc. (3), 118:3 (2019), 675–700 | DOI | MR | Zbl
[22] C. Chun, I. Moffatt, S. D. Noble, and R. Rueckriemen, “Matroids, delta-matroids and embedded graphs”, J. Combin. Theory Ser. A, 167 (2019), 7–59 | DOI | MR | Zbl
[23] O. T. Dasbach, D. Futer, E. Kalfagianni, Xiao-Song Lin, and N. Stoltzfus, “Alternating sum formulae for the determinant and other link invariants”, J. Knot Theory Ramifications, 19:6 (2010), 765–782 | DOI | MR | Zbl
[24] R. Dogra and S. Lando, Skew characteristic polynomial of graphs and embedded graphs, 2022, 26 pp., arXiv: 2201.07084
[25] A. Dunaykin and V. Zhukov, “Transition polynomial as a weight system for binary delta-matroids”, Mosc. Math. J., 22:1 (2022), 69–81 | DOI | MR | Zbl
[26] S. V. Duzhin and M. V. Karev, “Detecting the orientation of string links by finite type invariants”, Funktsional. Anal. i Prilozhen., 41:3 (2007), 48–59 ; English transl. in Funct. Anal. Appl., 41:3 (2007), 208–216 | DOI | MR | Zbl | DOI
[27] J. A. Ellis-Monaghan and I. Moffatt, Graphs on surfaces. Dualities, polynomials, and knots, SpringerBriefs Math., Springer, New York, 2013, xii+139 pp. | DOI | MR | Zbl
[28] J. A. Ellis-Monaghan and I. Moffatt, “The Las Vergnas polynomial for embedded graphs”, European J. Combin., 50 (2015), 97–114 | DOI | MR | Zbl
[29] J. M. Figueroa-O'Farrill, T. Kimura, and A. Vaintrob, “The universal Vassiliev invariant for the Lie superalgebra $gl(1|1)$”, Comm. Math. Phys., 185:1 (1997), 93–127 | DOI | MR | Zbl
[30] P. A. Filippova, “Values of the $\mathfrak{sl}_2$ weight system on complete bipartite graphs”, Funktsional. Anal. i Prilozhen., 54:3 (2020), 73–93 ; English transl. in Funct. Anal. Appl., 54:3 (2020), 208–223 | DOI | MR | Zbl | DOI
[31] P. A. Filippova, “Values of the $\mathfrak{sl}_2$ weight system on a family of graphs that are not the intersection graphs of chord diagrams”, Mat. Sb., 213:2 (2022), 115–148 ; English transl. in Sb. Math., 213:2 (2022), 235–267 | DOI | MR | Zbl | DOI
[32] S. Heil and C. Ji, “On an algorithm for comparing the chromatic symmetric functions of trees”, Australas. J. Combin., 75:2 (2019), 210–222 | MR | Zbl
[33] J. Huh, “Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs”, J. Amer. Math. Soc., 25:3 (2012), 907–927 | DOI | MR | Zbl
[34] F. Jaeger, “On transition polynomial for 4-regular graphs”, Cycles and rays (Montreal, PQ 1987), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 301, Kluwer Acad. Publ., Dordrecht, 1990, 123–150 | DOI | MR | Zbl
[35] S. A. Joni and G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139 | DOI | MR | Zbl
[36] B. B. Kadomtsev and V. I. Petviashvili, “On the stability of solitary waves in weakly dispersive media”, Dokl. Akad. Nauk SSSR, 192:4 (1970), 753–756 ; English transl. in Soviet Phys. Dokl., 15 (1970), 539–541 | Zbl
[37] M. E. Kazarian and S. K. Lando, “Combinatorial solutions to integrable hierarchies”, Uspekhi Mat. Nauk, 70:3(423) (2015), 77–106 ; English transl. in Russian Math. Surveys, 70:3 (2015), 453–482 | DOI | MR | Zbl | DOI
[38] N. Kodaneva, The interlace polynomial of binary delta-matroids and link invariants, 2020, 17 pp., arXiv: 2002.12440
[39] M. Kontsevich, “Vassiliev knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150 | DOI | MR | Zbl
[40] E. Krasilnikov, “An extension of the $\mathfrak{sl}_2$ weight system to graphs with $n\le 8$ vertices”, Arnold Math. J., 7:4 (2021), 609–618 | DOI | MR | Zbl
[41] E. Kulakova, S. Lando, T. Mukhutdinova, and G. Rybnikov, “On a weight system conjecturally related to $\mathfrak{sl}_2$”, European J. Combin., 41 (2014), 266–277 | DOI | MR | Zbl
[42] S. Lando, “On primitive elements in the bialgebra of chord diagrams”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 167–174 | DOI | MR | Zbl
[43] S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121 | DOI | MR | Zbl
[44] S. K. Lando, “$J$-invariants of plane curves and framed chord diagrams”, Funktsional. Anal. i Prilozhen., 40:1 (2006), 1–13 ; English transl. in Funct. Anal. Appl., 40:1 (2006), 1–10 | DOI | MR | Zbl | DOI
[45] S. Lando and V. Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755 | DOI | MR | Zbl
[46] S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia Math. Sci., 141, Low-Dimensional Topology, II, Springer-Verlag, Berlin, 2004, xvi+455 pp. | DOI | MR | Zbl
[47] J. W. Milnor and J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264 | DOI | MR | Zbl
[48] I. Moffatt and E. Mphako-Banda, “Handle slides for delta-matroids”, European J. Combin., 59 (2017), 23–33 | DOI | MR | Zbl
[49] A. Morse, “The interlace polynomial”, Graph polynomials, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2017, 1–23 | DOI | MR | Zbl
[50] M. Nenasheva and V. Zhukov, “An extension of Stanley's chromatic symmetric function to binary delta-matroids”, Discrete Math., 344:11 (2021), 112549, 10 pp. | DOI | MR | Zbl
[51] N. Netrusova, The interlace polynomial and knot invariants, preprint, 2011
[52] S. D. Noble and D. J. A. Welsh, “A weighted graph polynomial from chromatic invariants of knots”, Ann. Inst. Fourier (Grenoble), 49:3 (1999), 1057–1087 | DOI | MR | Zbl
[53] A. Okounkov and G. Olshanskii, “Shifted Schur functions”, Algebra i Analiz, 9:2 (1997), 73–146 ; English transl. in St. Petersburg Math. J., 9:2 (1998), 239–300 | MR | Zbl
[54] G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66 | DOI | MR | Zbl
[55] S. M. Roman and G.-C. Rota, “The umbral calculus”, Adv. Math., 27:2 (1978), 95–188 | DOI | MR | Zbl
[56] G.-C. Rota, J. Shen, and B. D. Taylor, “All polynomials of binomial type are represented by Abel polynomials”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3-4 (1997), 731–738 | MR | Zbl
[57] W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330 | DOI | MR | Zbl
[58] W. R. Schmitt, “Hopf algebra methods in graph theory”, J. Pure Appl. Algebra, 101:1 (1995), 77–90 | DOI | MR | Zbl
[59] E. Soboleva, “Vassiliev knot invariants coming from Lie algebras and $4$-invariants”, J. Knot Theory Ramifications, 10:1 (2001), 161–169 | DOI | MR | Zbl
[60] R. P. Stanley, “A symmetric function generalization of the chromatic polynomial of a graph”, Adv. Math., 111:1 (1995), 166–194 | DOI | MR | Zbl
[61] V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69 | DOI | MR | Zbl
[62] Z. Yang, On values of $\mathfrak{sl}_3$ weight system on chord diagrams whose intersection graph is complete bipartite, 2021, 17 pp., arXiv: 2102.00888
[63] Z. Yang, New approaches to $\mathfrak{gl}(N)$ weight system, 2022, 18 pp., arXiv: 2202.12225
[64] Z. Yang, On the Lie superalgebra $\mathfrak{gl}(m|n)$ weight system, 2022, 16 pp., arXiv: 2207.00327
[65] P. Zakorko, “Values of the $\mathfrak{sl}_2$-weight system on chord diagrams with complete intersection graph” (to appear)